我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程.今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务. 这两个分类项目就是:交通标志分类和票据分类.交通标志分类在无人驾驶或者与交通相关项目都有应用,而票…
Keras基本的使用都已经清楚了,那么这篇主要学习如何使用Keras进行训练模型,训练训练,主要就是“练”,所以多做几个案例就知道怎么做了. 在本文中,我们将提供一些面向小数据集(几百张到几千张图片)构造高效,实用的图像分类器的方法. 1,热身练习——CIFAR10 小图片分类示例(Sequential式) 示例中CIFAR10采用的是Sequential式来编译网络结构.代码如下: # 要训练模型,首先得知道数据长啥样 from __future__ import print_function…
本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html 本文作者:Francois Chollet 按照官方的文章实现过程有一些坑,彻底理解代码细节实现,理解keras的api具体使用方法 也有很多人翻译这篇文章,但是有些没有具体实现细节 另外keres开发者自己有本书的jupyter:Companion Jupyter notebooks for th…
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK TensorFlow-gpu Keras-gpu Theano MKL CuDNN 参考书籍:谢梁 , 鲁颖 , 劳虹岚.Keras快速上手:基于Python的深度学习实战 Keras 简介 Keras 这个名字来源于希腊古典史诗<奥德赛>的牛角之门(Gate of Horn):Those tha…
今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,François Chollet‏ 再一次在推特上表示 Keras 官方文档已经基本完成!他非常感谢翻译和校对人员两个多月的不懈努力,也希望 Keras 中文使用者能继续帮助提升文档质量. 这一次发布的是 Keras 官方中文文档,它得到了严谨的校对而提升了整体质量.但该项目还在进行中,虽然目前已经上线了很多 A…
在网上看到一篇博客,地址https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/,是关于利用keras上预训练的模型进行图像分类的示例,于是我也自己动手运行了一下,效果,一般. 上代码 from keras.applications import ResNet50 from keras.applications import InceptionV3 from keras.ap…
1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras: a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) b)支持CNN和RNN,或二者的结合                 c)无缝CPU和GPU切换 2)设计原则 a)用户友好:Keras是为人类而不是天顶星人设计的API.用户的使…
关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: model.summary():打印出模型概况,它实际调用的是keras.utils.print_summary model.get_config():返回包含模型配置信息的Python字典.模型也可以从它的config信息中重构回去 config = model.get_config() mode…
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失函数的探讨,其结合keras的API讨论了两者的计算原理和应用原理. 本文主要是介绍TF中的接口调用方式. 一.二分类交叉熵 对应的是网络输出单个节点,这个节点将被sigmoid处理,使用阈值分类为0或者1的问题.此类问题logits和labels必须具有相同的type和shape. 原理介绍 设x…
Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: model.summary():打印出模型概况,它实际调用的是keras.utils.print_summary model.get_config():返回包含模型配置信息的Python字典.模型也可以从它的config信息中重构回去 config = model.get_config() model = Model.…