【数学建模】day04-插值与拟合】的更多相关文章

前言 不管是不是巴萨的球迷,只要你喜欢足球,就一定听说过梅西(Messi).苏亚雷斯(Suarez)和内马尔(Neymar)这个MSN组合.在众多的数学建模辅助工具中,也有一个犀利无比的MSN组合,他们就是python麾下大名鼎鼎的 Matplotlib + Scipy + Numpy三剑客. 本文是我整理的MSN学习笔记,有些理解可能比较肤浅,甚至是错误的.如果因此误导了某位看官,在工作中造成重大失误或损失,我顶多只能赔偿一顿饭——还得是我们楼下的十元盒饭.特此声明. 文中代码均从我的这台时不…
非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法,我们在这里学习的当然不是数学方法,而是如何建模.如何编程求解. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 从线性规划到非线性规划 本系列的开篇我们介绍了线性规划 (Linear Programming) 并延伸到整数规划.0-1规划,以及相对复杂的固定费…
方差分析和回归分析. 用数理统计分析试验结果.鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作 ANOVA. 比如:从用不同工艺制作成的灯泡中,各自抽取了若干个测量寿命,腿短这几种工艺制成的灯泡是否有显著差异:用几种化肥和几种小麦品种种子在若干试验田里种植小麦,腿短不同的化肥和小麦品种对产量有无显著影响. 简而言之,就是对影响指标(实验的结果)的诸多因素进行分析,找出有显著影响的因素.不同的因素叫做一个水平.比如,用化肥1.品种1就是因素处于一个水平,…
数学建模概述 监督学习-回归分析(线性回归) 监督学习-分类分析(KNN最邻近分类) 非监督学习-聚类(PCA主成分分析& K-means聚类) 随机算法-蒙特卡洛算法 1.回归分析 在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间互相依赖的定量关系的一种统计分析方法. 按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析. 2.线性回归的python实现 线性回归的python实现方法 线性回归通常是人们在学习预测模型时首选的技术之一…
2018数学建模已经告一段落了,先说说基本情况吧,我们队伍专业分别为:金融(A),会计(B),计算机(我),配置还算可以,他们俩会数据分析软件也会写论文,我可以写代码,画图.他们俩打过美赛(M奖),我只打过算法竞赛.这里特别提出,有会写论文的队友很重要,不是说会latex会排版就算会,还要知道论文基本架构,遣词造句,专业术语等等. 题目下来的晚上,我们就确定了A题,因为B题的话我们基本没有专业知识能用上的,什么都要现学,其实特别想做C题,推荐系统啊,经济学分析啊我们都做过,可惜选不了….确定题目…
原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注意 Matlat 的数组下标从1开始), %m 个插值点以数组 x 输入,输出数组 y 为 m 个插值 n=length(x0);m=length(x); :m z=x(i); s=0.0; :n p=1.0; :n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end…
一.学习目标. (1)了解Matlab与数学建模竞赛的关系. (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险. (3)掌握Matlab数学建模的回归算法. 二.实例演练. 1.谈谈你对Matlab与数学建模竞赛的了解. Matlab在数学建模中使用广泛:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB 的使用率几乎 100%.虽然比较知名的数模软件不只 MATLAB. 人们喜欢使…
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要求 方法 2020A 炉温曲线 建立温度模型,计算炉温曲线,确定最大速度 根据传热学方程建立温度分布机理模型:建立单目标优化模型 微分方程 单目标优化 2019A 高压油管的压力控制 确定不同条件下的控制方案 根据力学方程建立压力变化机理方程:建立单目标优化模型 微分方程 单目标优化 2018A 高…
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手把手教你搞定微分方程. 通过二阶 RLC 电路问题,学习微分方程模型的建模.求解和讨论. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 微分方程 1.1 基本概念 微分方程是描述系统的状态随时间和空间演化的数学工具.物理中许多涉及变力的运动学.动力学问题,如空…
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本文详细给出了 SEIR 模型微分方程的建模.例程.结果和分析,让小白都能懂. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. SEIR 模型 1.1 SEIR 模型的提出 建立传染病的数学模型来描述传染病的传播过程,要根据传染病的发病机理和传播规律, 结合疫情…