本章,介绍 基于jena的规则引擎实现推理,并通过两个例子介绍如何coding实现. 规则引擎概述 jena包含了一个通用的规则推理机,可以在RDFS和OWL推理机使用,也可以单独使用. 推理机支持在RDF图上推理,提供前向链.后向链和二者混合执行模式.包含RETE engine 和 one tabled datalog engine.可以通过GenericRuleReasoner来进行配置参数,使用各种推理引擎.要使用 GenericRuleReasoner,需要一个规则集来定义其行为. Ru…
在第2篇里,介绍了jena的The general purpose rule engine(通用规则引擎)及其使用,本篇继续探究,如何自定义builtin. builtin介绍 先回顾builtin为何物,官方叫Builtin primitives,可以理解为内置函数.内置指令,可以返回true或者false用来检验rule是否匹配,官方包含如下的primitives Builtin Operations isLiteral(?x) notLiteral(?x) isFunctor(?x) no…
1 导引 在知识图谱领域,最重要的任务之一就是实体对齐 [1](entity alignment, EA).实体对齐旨在从不同的知识图谱中识别出表示同一个现实对象的实体.如下图所示,知识图谱\(\mathcal{G}_1\)和\(\mathcal{G}_2\)(都被虚线框起来)是采自两个大型知识图谱Wikida和DBpedia的小子集.圆角矩形框表示实体,方角矩形表示属性值.圆角矩形之间的箭头代表一个关系谓词(relation predicate),而这就进一步形成了关系元组,如\((\text…
知识图谱实体对齐2:基于GNN嵌入的方法 1 导引 我们在上一篇博客<知识图谱实体对齐1:基于平移(translation)嵌入的方法>中介绍了如何对基于平移嵌入+对齐损失来完成知识图谱中的实体对齐.这些方法都是通过两个平移嵌入模型来将知识图谱\(\mathcal{G}_1\)和\(\mathcal{G}_2\)的重叠实体分别进行嵌入,并加上一个对齐损失来完成对齐.不过,除了基于平移的嵌入模型之外,是否还有其它方式呢? 答案是肯定的.目前已经提出了许多基于GNN的实体对齐方法[1],这些方法不…
通过例句介绍Sparql的使用 1 简介 SPARQL的定义,是一个递归的定义,为SPARQL Protocal and RDF Query Language,是W3C制定的RDF知识图谱标准查询语言,大部分的图数据库都支持SPARQL查询.SPARQL在语法上借鉴了SQL.SPARQL是针对RDF三元组进行查询,通过图匹配的方式获得需要查找的内容. 下面通过一个例子来说明SPARQL的查询语句的基本结构.这个例子可以在http://dbpedia.org/sparql中运行,获取结果. pre…
1 Protégé简介 Protégé是一个本体建模工具软件,由斯坦福大学基于java语言开发的,属于开放源代码软件.软件主要用于语义网中本体的构建和基于本体的知识应用,是本体构建的核心开发工具,最新版本为5.5.0(截至2019年7月). Protégé支持中文,能够实现实体关系的中文展示.如下图. 具体来说,Protégé具有以下功能. 类建模.Protégé提供了一个图形化用户界面来建模类(包括概念)和它们的属性以及关系. 实例编辑.根据创建的类型,Protégé会自动产生交互的形式,可以…
1 概述 D2RQ,含义是把关系型数据库当作虚拟的RDF图数据库进行访问.D2RQ平台是一个将关系型数据库当作虚拟的.只读的RDF图数据库进行访问的系统.提供了基于RDF访问关系数据库的内容,而无需复制这个数据库将其以RDF的形式进行保存.D2RQ有以下功能: 使用SPARQL查询非RDF数据库: 在Web上,将数据库内容当作链接数据进行访问: 以RDF形式创建一个自定义的数据库,加载成RDF存储: 使用Apache Jena API访问非RDF数据库的信息. D2RQ是一个开源软件,基于Apa…
知识图谱中的知识是通过RDF结构来进行表示的,其基本单元是事实.每个事实是一个三元组(S, P, O),在实际系统中,按照存储方式的不同,知识图谱的存储可以分为基于表结构的存储和基于图结构的存储. 基于表结构的存储可以用关系型数据库,常见的关系型数据库存储系统有MySQL.Oracle.DB2.Microsoft SQL Server等:基于图结构的存储,常见的存储系统有Neo4j.OritentDB.InfoGrid.HyperGraphDB.infiniteGraph等.下面讲述Neo4j数…
IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 论文地址: Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 摘要 1.引言 2.相关工作 2.1 查询嵌入(QE) 2.2 基于路径的方法 2.3 归纳式KGC 2.4 类型感知任务 3.背景 4.语义丰富嵌入 4.1 TER:类型感知的实体表示 4.2 TRR:类型感知的关系表示 4.2.1 St…
12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 摘要 1.引言 2.相关工作 2.1 知识图补全(KGC) 2.2 预训练语言模型(PLM) 2.3 对比学习 3.模型方法 3.1 符号 3.2 模型结构 3.3 负采样 3.3.1 批内负采样(IB) 3.3.2 批前负采样(PB) 3.3.3 自我负采样(SN) 3.3.4 负采样处理 3.4 基于图的重排序 3.5 训练和推断 摘要 知识…