XGBoost是2014年3月陈天奇博士提出的,是基于CART树的一种boosting算法,XGBoost使用CART树有两点原因:对于分类问题,CART树的叶子结点对应的值是一个实际的分数,而非一个确定的类别,这有利于实现高效的优化算法:XGBoost有两个特点快和准,快一方面是并行的原因,另一方面是CART树的计算没有对数项. XGBoost首先是一种基于决策树的集成模型,假设有K棵CART树,则集成的预测结果为:(fK代表第k颗树的输出结果) XGBoost的目标优化函数定义为: 目标优化…