Spark调优与调试】的更多相关文章

Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. Spark特定的优先级顺序来选择实际配置: 优先级最高的是在用户代码中显示调用set()方法设置选项: 其次是通过spark-submit传递的参数: 再次是写在配置文件里的值: 最后是系统的默认值. 3.查看应用进度信息和性能指标有两种方式:网页用户界面.驱动器和执行器进程生成的日志文件. 4.…
下面来看看更复杂的情况,比如,当调度器进行流水线执行(pipelining),或把多个 RDD 合并到一个步骤中时.当RDD 不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行.上一篇博文结尾处输出的谱系图使用不同缩进等级来展示 RDD 是否会在物理步骤中进行流水线执行.在物理执行时,执行计划输出的缩进等级与其父节点相同的 RDD 会与其父节点在同一个步骤中进行流水线执行.例如,当计算 counts 时,尽管有很多级父 RDD,但从缩进来看总共只有两级.这表明物理执行只需要两个…
1.使用SparkConf配置Spark (1)在java中使用SparkConf创建一个应用: SparkConf conf =;i++){ javaBean bean =new javaBean(i); list.add(bean); } JavaRDD<javaBean> rdd =sc.parallelize(list); for(javaBean bean:rdd.collect()) System.out.println(bean); }} 来自为知笔记(Wiz)…
一.使用SparkConf配置Spark 对 Spark 进行性能调优,通常就是修改 Spark 应用的运行时配置选项.Spark 中最主要的配置机制是通过 SparkConf 类对 Spark 进行配置.当创建出一个 SparkContext 时,就需要创建出一个 SparkConf 的实例. import org.apache.spark.SparkContext import org.apache.spark.SparkConf object Test { def main(args: A…
1.使用Sparkconf配置Spark 对Spark进行性能调优,通常就是修改Spark应用的运行时配置选项. Spark中最主要的配置机制通过SparkConf类对Spark进行配置,当创建出一个SparkContext时,就需要创建出一个SparkConf实例. Sparkconf实例包含用户要重载的配置选项的键值对.调用set()方法来添加配置项的设置,然后把这个对象传给SparkContext的构造方法. 调用setAppName()和setMaster()来分别设置spark.app…
spark调优是须要依据业务须要调整的,并非说某个设置是一成不变的,就比方机器学习一样,是在不断的调试中找出当前业务下更优的调优配置.以下零碎的总结了一些我的调优笔记. spark 存储的时候存在严重的分配不均的现象,有几台机器在过渡使用, 有几台机器却非常少被使用.有几台机器缓存了几十个上百个RDD blocks  有的机器一个RDD blocks 都没有.这样存储有RDD blocks 的能够进行运算.运算的tasks 最多为该机器core数. spark.storage.memoryFra…
Spark调优 | Spark Streaming 调优 1.数据序列化 2.广播大变量 3.数据处理和接收时的并行度 4.设置合理的批处理间隔 5.内存优化 5.1 内存管理 5.2优化策略 5.3垃圾回收(GC)优化 5.5Spark Streaming 内存优化 6.实例项目调优 6.1合理的批处理时间(batchDuration) 6.2合理的 Kafka 拉取量(maxRatePerPartition 参数设置) 6.3缓存反复使用的 Dstream(RDD) 6.4其他一些优化策略…
Spark版本:1.1.0 本文系以开源中国社区的译文为基础,结合官方文档翻译修订而来,转载请注明以下链接: http://www.cnblogs.com/zhangningbo/p/4117981.html http://www.oschina.net/translate/spark-tuning 目录 数据序列化 内存优化 确定内存消耗 优化数据结构 序列化RDD存储 优化内存回收 其他考虑因素 并行度 Reduce任务的内存用量 广播”大变量“ 总结 因为大多数Spark程序都具有“内存计…
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要. spark提交作业,yarn-cluster模式示例: ./bin/spark-submit\ --class com.ww.rdd.wordcount \ --master yarn \ --deploy-mode cluster \  --executor-memory 4G \ --num…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…