Lucene TFIDF打分公式】的更多相关文章

还没读TFIDFSimilarity的代码,读了一下lucene的文档,没有特复杂,感觉还是非常严谨的. 对于查询q和文档d,如果查询为纯token查询,套用向量空间模型(VSM),相似度度量使用余弦,另外再加一个coord(q,d)即d中满足q中must和should查询条件个数的度量(预计通常是m / n了).cos直接用向量点积除以两个向量的模(euclidean norm). cos = v(q) * v(d) / (|v(q)|  * |v(d)|) sim = coord(q,d)…
在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene的打分公式非常复杂,如下: 在推导之前,先逐个介绍每部分的意义: t:Term,这里的Term是指包含域信息的Term,也即title:hello和content:hello是不同的Term coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包…
原文出自:http://www.cnblogs.com/forfuture1978/archive/2010/03/07/1680007.html 在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene的打分公式非常复杂,如下: 在推导之前,先逐个介绍每部分的意义: t:Term,这里的Term是指包含域信息的Term,也即title:hello和co…
在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene的打分公式非常复杂,如下: 在推导之前,先逐个介绍每部分的意义: t:Term,这里的Term是指包含域信息的Term,也即title:hello和content:hello是不同的Term coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包…
在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene的打分公式非常复杂,如下: 在推导之前,先逐个介绍每部分的意义: t:Term,这里的Term是指包含域信息的Term,也即title:hello和content:hello是不同的Term coord(q,d):一次搜索可能包含多个搜索词,而一篇文档中也可能包含多个搜索词,此项表示,当一篇文档中包…
作为一个开放源代码项目,Lucene从问世之后,引发了开放源代码社群的巨大反响,程序员们不仅使用它构建具体的全文检索应用,而且将之集成到各种系统软件中去,以及构建Web应用,甚至某些商业软件也采用了Lucene作为其内部全文检索子系统的核心.apache软件基金会的网站使用了Lucene作为全文检索的引擎,IBM的开源软件eclipse的2.1版本中也采用了Lucene作为帮助子系统的全文索引引擎,相应的IBM的商业软件Web Sphere中也采用了Lucene.Lucene以其开放源代码的特性…
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zteny/article/details/57366074 一.预热 TFIDFSimilarity曾经是Lucene/Solr默认评分公式,但是从lucene-6.0开始已经改成BM25Similary了(详见Lucene-6789).但我们今天看的依然是TFIDFSimilarity,因为它相对简单一些,对我们理解评分过程有好处. 首先…
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核…