假设检验、T检验】的更多相关文章

Chi-square distribution introduction 这个视频真的好,完美地解释了卡方统计量是怎么来的! 我们有一个标准正态分布的总体,我们从其中抽一次,取该值的平方就是Q1统计量:抽两次,取两次值得平方和,就是Q2统计量:以此类推... 这就是自由度逐渐增加的卡方分布. 卡方分布 可以用于比较两组数(A和B)是否来源于一个分布,假设B和A同分布(通常假设为正态分布),那么就可以推出B的期望值. 然后就可以计算这两组数的卡方统计量,查表. 常见的一个例子就是检验赌博机/硬币是…
转自:http://blog.csdn.net/colddie/article/details/7773278 函数名称 函数说明 调用格式 正态总体的参数检验 ztest 单样本均值的z检验 (总体服从正态分布) [h,sig,ci,zval] = ztest(x,mu0,sigma,alpha,tail) ttest 单样本均值t检验 (总体服从正态分布) [h,sig,ci,tval] = ttest(x,mu0,alpha,tail) ttest2 双样本均值差t检验 (两个总体均服从正…
统计检验是将抽样结果和抽样分布相对照而作出判断的工作.主要分5个步骤: 建立假设 求抽样分布 选择显著性水平和否定域 计算检验统计量 判定 -- 百度百科 假设检验(hypothesis test)亦称显著性检验(significant test),是统计推断的另一重要内容,其目的是比较总体参数之间有无差别.假设检验的实质是判断观察到的"差别"是由抽样误差引起还是总体上的不同,目的是评价两种不同处理引起效应不同的证据有多强,这种证据的强度用概率P来度量和表示.除t分布外,针对不同的资料…
P值与significant的理解 来源:广州市统计局   发表日期:2015-01-21     P值可以理解为结论的风险大小,也就是根据数据得出的结果有多大的错误风险,P值越小,结论错误的风险越小,即结论越可靠.P值越大,错误的风险越大,即结论的可靠性差.实际上significant的含义应该是“非偶然的”,当根据样本资料所得结果是significant,实际上表明这一结果“不是偶然”得到的,更可能是真实存在这样一种结果.关于P值的理解         P值可以理解为结论的风险大小,也就是根…
上一次的实验做到可以从pc端读取到MindWave传输过来的脑电波原始数据了. 我是先定义一个结构体,该结构体对应保存所有能从硬件中取到的原始数据. struct FD_DATA { int battery;//电量 int poor_signal;//连接质量 int attention;//专注度 int meditation;//冥想度 int raw;//原始数据 int delta;//δ波段 int theta;//θ脑波 int alpha1;//α脑波 int alpha2;//…
假设检验初步: https://cosx.org/2010/11/hypotheses-testing t检验:https://mangowu97.github.io/%E5%82%BB%E7%93%9C%E5%BC%84%E6%87%82t%E6%A3%80%E9%AA%8C One- and Two-Tailed Tests:http://onlinestatbook.com/2/logic_of_hypothesis_testing/tails.html 假设检验的基本原理和T检验:htt…
第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方检验的分类? 两组比例简式: 多组比例简式: 2 × 2列联表的χ2检验可利用以下简式而不必计算理论次数 T为总样本数 2×c列联表的独立性检验简式? 二者选其一…
第三章 假设检验 区间估计与假设检验的基本区别? 上一章中讨论了置信区间的估计方法.它是利用样本数据,以抽样总体的分布为理论基础,用一定的概率保证来计算出原总体中未知参数的区间范围.特别值得注意的是:在作区间估计之前,我们对所要估计的参数是一无所知的. § 而在这一章中,我们所要做的工作是,先对要研究的参数作一个假设,然后去检验这个假设是否正确.因此假设检验对于所研究的参数总是先有一个假设的值. § 这也是这两种方法最基本的区别. 显著水平(significance level)或概率水平(pr…
本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大家尽量理解即可.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:NP理论的基本概念 Part 2:似然比检验 Part 3:假设检验与区间估计 Part 1:NP理论的基本概念 NP理论的样本\(X\sim \{F_{\theta}:\theta\in\Theta \}\),即来自一个参数分布族,相比拟合优度检验,此时的模型假…
显著性水平α与P值: 1.显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示. 显著性是对差异的程度而言的,是在进行假设检验前确定的一个可允许作为判断界限的小概率标准. 2.P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较. P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率.如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理就有理由拒绝原假设,P值越小,拒绝原假设的理由越充分. 总结,P值…
Z检验 statsmodels.stats.weightstats.ztest() import statsmodels.stats.weightstats as sw 参数详解: x1:待检验数据集: x2:待检验数据集:默认为None,双样本检验时不为None: value:在一个样本中,value是原假设下x1的均值.在两个样本中,value为原假设下x1均值与x2均值之差: alternative:str,默认为'two-sided',双尾检验:右尾检验,'larger';左尾检验,'s…
转载请标明出处: http://www.cnblogs.com/tiaozistudy/p/hypothesis_testing_based_feature_selection.html Filter特征选择方法是一种启发式方法,其基本思想是:制定一个准则,用来衡量每个特征/属性,对目标属性的重要性程度,以此来对所有特征/属性进行排序,或者进行优选操作.常用的衡量准则有假设检验的p值.相关系数.互信息.信息增益等.本文基于候选属性和目标属性间关联性的假设检验,依据p值的大小量化各候选属性的重要性…
学过的统计知识忘光了,飞速恶补了一下能用到的,此篇多有错误今后看到再改= =||| 成对t检验(Paired ttest) 将两组测量值对应相减,再将所得差值看作服从正态分布的随机变量,然后再做关于差值的均值的假设检验. matlab:[h, p, ci, stats] = ttest(x, y, 'name', 'value'); ▷ OPTIONS: …'Alpha' :显著性水平(0, 1) …'Dim' :第一非单值维度(默认) …'Tail' :备择假设类型(‘both’(默认)|'r…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒…
来源: http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html   1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定.   通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,…
来源:http://blog.sina.com.cn/s/blog_6b1c9ed50101l02a.html,http://wenku.baidu.com/link?url=3mRTbARl0uPHHRFO9CdqhBNeUj-nb8dRwtqRN2oGqu8u1kN6IsqgYy-H8ggB7jOkPXhx703oM9YW9ftfOlh2dz7KJmlliOhDa4-WZFEEus_,http://www.dxy.cn/bbs/thread/28263194#28263194 一.假设检验基…
转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.…
http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料间.样本与均数间.两样本均数间比较三种,三者的计算公式不能混淆. 2.t'检验 应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式. 3.U检验 应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验.…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很 少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够…
假设检验(Hypothesis Testing) 1. 什么是假设检验呢? 假设检验又称为统计假设检验,是数理统计中根据一定假设条件由样本推断总体的一种方法. 什么意思呢,举个生活中的例子:买橘子(借用http://www.360doc.com/content/16/0617/08/31718185_568436468.shtml) 当我们去买橘子的时候,无论甜不甜,老板都会说:"挺甜的,不信拿一个尝尝".我们随手拿一个(这就相当于抽样),此时我们对于这些橘子甜或不甜的判断全基于这个橘…
http://blog.csdn.net/pipisorry/article/details/51184556 T检验 T检验,亦称student t检验(Student's t test),学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计.学生t检验常作为检验一群来自常态分配母体的独立样本之期望值的是否为某一实数,或是二群来自常态分配母体的独立样本之期望值的差是否为某一实数. 主要用于样本含量较小(例如n<30),总…
假设检验的基本思想: 若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的.如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设. 实质分析: 假设检验实质上是对原假设是否正确进行检验,因此检验过程中要使原假设得到维护,使之不轻易被拒绝:否定原假设必须有充分的理由.同时,当原假设被接受时,也只能认为否定该假设的根据不充分,而不是认为它绝对正确. 1.检验指定的数列是否服从正态分布 借助假设检验的思想,利用K-S检验可以对数列的性质进行检验…
总结起来就三句话: (1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正 (2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p-value cutoff就更小了,从而使得结果更加严谨 (3)FDR校正是对每个p-value做校正,转换为q-value.q=p*n/rank,其中rank是指p-value从小到大排序后的次序. 举一个具体的实例: 我们测量了M个基因在A,B,C,D,E一共5个时间点的表达量,求其中的差异基因,具体…
t-检验: t-检验,又称student‘s t-test,可以用于比较两组数据是否来自同一分布(可以用于比较两组数据的区分度),假设了数据的正态性,并反应两组数据的方差在统计上是否有显著差异. matlab中提供了两种相同形式的方法来解决这一假设检验问题,分别为ttest方法和ttest2方法,两者的参数.返回值类型均相同,不同之处在于ttest方法做的是 One-sample and paired-sample t-test,而ttest2则是 Two-sample t-test with…
了解什么是有效大小,尝试一个单一样本t检验的完整示例. 效应量 调查研究的一个重要方面是效应量,在实验性研究中或存在处理变量的研究中,效应量是指处理效应的大小,意思很直观: 在非实验性研究中,效应量是指变量之间的关系强度,在 z 检验或 t 检验中,最简单的效应量衡量指标是均值差异,即两个均值之间的差异,在 z 检验或单样本 t 检验中,均值差异等于 x 拔减去 μ,当变量的含义很容易明白时,也就是说不需要专门的训练就知道其中的含义,这时候均值差异就很有用. 来做一道小测试题,以下哪些变量的含义…
转自:https://blog.csdn.net/m0_37777649/article/details/74937242 1.什么是T检验? T检验是假设检验的一种,又叫student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料. T检验用于检验两个总体的均值差异是否显著. 2.单总体t检验例子 “超级引擎”工厂是一家专门生产汽车引擎的工厂,根据政府发布的新排放要求,引擎排放平均值应低于20ppm,如何证明生产的引擎是否达标…
在针对连续变量的统计推断方法中,最常用的是 t 检验和方差分析两种. t 检验,又称 student t 检验,主要用于样本含量较小(例如n<30),总体标准差未知的正态分布资料.它是用 t 分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著. u 检验适用于总体标准差已知的小样本均数的假设检验,或总体标准差未知的大样本均数的假设检验.当样本数较大时,t 检验和 u 检验可以等同使用. t 检验又三种: (1)单样本 t 检验过程:进行样本均数与已知总体均数的比较. 当样本量足够大,…
假设检验的标准步骤: 1.建立假设:根据问题的需要提出原假设H0,以及其对立面备择假设H1. 2.确立检验水准:即设立小概率事件的界值α. 3.进行试验:得到用于统计分析的样本,以该试验的结果作为假设检验的根据. 4.选定检验方法,计算检验统计量. 5.确定P值. 原假设也称为零假设,备择假设也称为对立假设.对立假设就是对立于原假设,备择假设的意思是,一旦你决定不采纳原假设,则这假设可备你选择. 根据统计学观点,接受原假设和否定原假设,二者的意义并非对等.接受原假设只是意味着,按所获数据来看,并…
如果你在寻找卡方分布是什么?如何实现卡方检验?那么请看这篇博客,将以通俗易懂的语言,全面的阐述卡方.卡方检验及其python实现. 1. 卡方分布 1.1 简介 抽样分布有三大应用:T分布.卡方分布和$\Gamma$分布.可以简单用四个字概括它们的作用:“以小博大”,即通过小数量的样本容量去预估总体容量的分布情况.这里开始介绍卡方分布.${\chi ^{\text{2}}}$分布在数理统计中具有重要意义.  ${\chi ^{\text{2}}}$分布是由阿贝(Abbe)于1863年首先提出的,…
4.8.1  已知,单个正态总体的均值μ的假设检验(U检验法) 函数  ztest 格式  h = ztest(x,m,sigma)   % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha)   %显著性水平为alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail)   %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的1-alph…