题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n<=10^9\) \(Solution\) 以前做的反演题都是\(j\)枚举到\(n\),但是现在\(j\)只枚举到\(i\)就非常难受,考虑怎么求\(\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}\). 可以把它看成是一个\(n*n\)的网格,第\(i\…
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数 输入 一行两个整数\(p,n\) 输出 一行一个整数,为题目中所求值 样例 样例输入 998244353 2000 样例输出 883968974 数据范围 \(n\leq 10^{10}\) \(5\times 10^8 \leq…
题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ij\sum\limits_{d|gcd(i,j)}\varphi(d)$ $\sum\limits_{d=1}^{N} \varphi(d) \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{…
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i=1}^n\sum_{j=1}^n ij(i,j)&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n ij[(i,j)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
\(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书,在看到数论那一章的时候, LzyRapxLzyRapx 突然想到这样一个问题. 设 \[ F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)} \] 其中,\(\mathrm{lcm}(a,b)\) 表示…
题目链接 题意:给定\(n\le 10^9\),求:\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\),对1e9+7取模 推式子: \(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\) \(=\sum_{i=1}^n\sum_{j=1}^i\frac{ij}{\gcd^2(i,j)}\) \(=\…
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…
传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f(n,k)\)为满足要求的\(k\)元组个数,现在要求出\(\sum_{i=1}^n f(i,k),1\leq n\leq 10^9,1\leq k\leq 1000\). 思路: 首先来化简一下式子,题目要求的就是: \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1…
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . 题解 欧拉函数(欧拉反演)+杜教筛 推式子: $$\begin{align}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|…
https://loj.ac/problem/6229 题解:https://blog.csdn.net/Vectorxj/article/details/79094659 套路推式子,杜教筛,证明复杂度. 感谢NicoDafaGood,不在这里写题解了,式子列出来太长啦,写在本本上. //Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #in…
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\(gcd\)提出来 \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d]\] 习惯性的提出来 \[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\] 后面这玩意很明显的来一发…
\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. \(\color{#0066ff}{输入格式}\) 一行两个整数p.n. \(\color{#0066ff}{输出格式}\) 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~…
链接: https://loj.ac/problem/6229 题意: \[F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\] 让你求 \(F(n) \bmod1000000007\). 题解: 设\(\begin{align} f(n)=\sum_{i=1}^n\frac{lcm(i,n)}{gcd(i,n)}&=\sum_{i=1}^n\frac{n*i}{(i,n)^2}\\ &=\su…
题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i,j)$ 枚举gcd(i,j)=w,得到 $\sum\limits_{w=1}^{n}w\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ij[w=gcd(i,j)]$ 这时候我们设一个…
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\] 其中\(f(x)\)表示\(x\)的次大质因子. 题解 这个数据范围不是杜教筛就是\(min\_25\)筛了吧... 看到次大质因子显然要\(min\_25\)筛了吧... 莫比乌斯反演的部分比较简单,懒得写过程了. \[ans=\sum_{T=1}^n [\frac{n}{T}]^2\sum_…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
LOJ 题面传送门 首先将 \(\sigma_k(ij)\) 展开: \[\sigma_k(ij)=\sum\limits_{x\mid i}\sum\limits_{y\mid j}[x\perp y](\dfrac{iy}{x})^k \] 具体原理就是我们将一组 \(x\mid i,y\mid j,x\perp y\) 的因子对 \((x,y)\) 对应到一个 \(ij\) 的质因子 \(f(x,y)\) 上.考虑每一个质因子 \(p\),由于 \(x\perp y\) 这个限制的存在,\…
emm卡常 我本来写成了这个样子: #include<bits/stdc++.h> using namespace std; typedef long long LL; ; struct node{ LL s[][]; }; LL m0[][]={,,,}; LL m1[][]={-,,,-}; node mult(node x,node y) { node ans; memset(ans.s,,sizeof(ans.s)); ;i<;i++) ;j<;j++) ;k<;k+…
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展开,把T提出来 S那里可以数论分块,那么只要S后面那个东西可以筛出来,就可以O(sqrt(n)) 发现后面的那部分可以狄利克雷卷积一波 这明显是一个积性函数,但是n有10^10,所以不能线筛 考虑使用杜教筛,令上述函数为f,函数S为f的前缀和 套用杜教筛模板式 现在问题就是选一个合适的g函数了 我们…
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.org/blog/cjyyb/solution-p3768 //minamoto #include<iostream> #include<cstdio> #include<map> #define ll long long using namespace std; ; map&…
求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i=1}^{n}\sum_{j=1}^{n}ij\sum_{d|gcd(i,j)}\varphi(d)$   $\Rightarrow \sum_{i=1}^{n}\sum_{j=1}^{n}ij\sum_{d|i,d|j}\varphi(d)$   $\Rightarrow \sum_{d=1}^{…
\[\sum_{i=1}^{n}\sum_{j=1}^{n} ij\gcd(i,j)\] \[=\sum_{d=1}^{n} d \sum_{i=1}^{n}\sum_{j=1}^{n} ij[\gcd(i,j)==d]\] \[=\sum_{d=1}^{n} d^3 \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{n}{d}\rfloor} ij[\gcd(i,j)==1]\] \[=\sum_{d=1}^{n}…
题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M] 解题思路: 代码: #include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long ll; ; ; ll n,m,mu[maxn],sum[maxn],…
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次. 特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数. 题解 首先先莫比乌斯反演前几步. \[ ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloo…
题面 传送门 题解 这题有毒--不知为啥的错误调了半天-- 令\(f(i)={sgcd(i)}\),那么容易看出\(f(i)\)就是\(i\)的次大质因子,用\(i\)除以它的最小质因子即可计算 于是题目所求即为 \[\sum_{i=1}^n\sum_{j=1}^n{f(\gcd(i,j))}^k\] \[\sum_{d=1}^n {f(d)}^k\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\f…
https://scut.online/p/354 跟多项式一点关系都没有. 注意到其实两个多项式在1处求值,那么就是他们的系数加起来. 列一列发现系数就是n以内两两求gcd的值,还自动把0去掉了. 那么就是 \(\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}gcd(i^2,j^2)\) 这种情况就要枚举g但是为了方便我们也是枚举g而不是g平方 \(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{n}\sum\limit…
求单个莫比乌斯函数忘记算n本身的质数,WA了一发. http://www.fjutacm.com/Problem.jsp?pid=2360 首先,显然随着n增大,与m互质的数不会变少.可以二分来求k,关键是怎么快速计算n以内和m互质的数的个数. 反过来,我们求n以内与m的gcd至少为2的数的个数. 枚举m的因子d,d从2开始到m,那么每个因子d的贡献就是mu(d),不知道怎么解释好. 比如枚举了gcd为因子2,那么gcd为4,8的情况就已经被2包含了,不用计算,直接mu(4)=mu(8)=0.…
真是一道"简单"的数学题呢~ 反演题, 化式子. \[ ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^nij[gcd(i,j)=d]\\ =\sum_{d=1}^nd\sum_{i=1}^n\sum_{i=1}^nij[gcd(i,j)=1]\\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}…
非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]\] 很套路的把后面的\(d\)提出来: \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]=\sum_{d=1}^nd^3\sum_{i=1}^{…