勾股数组及其应用uva106】的更多相关文章

勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + (db)^2 = (dc)^2 --> (a^2+b^2) * d^2 =c^2 * d^2 d的取值是任意的,所以存在多个勾股数组 本源勾股数组 本源勾股数组是一个三元组(a,b,c),其中a,b,c只存在公因数1,且满足a^2 + b^2 = c^2 积累数据:下面的一些本源勾股数组 (3,4…
[题意] 给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解. [题解] 一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标,再判断是否符合条件. 亲测TLE 直到知道了本源勾股数组的构造方法... 每个本源勾股数组(a,b,c)满足a*a+b*b=c*c,其中a为奇数,b为偶数.. 枚举s,t(1<=t<s,且它们是没有公因数的奇数) a=st b=(s*s-t*t)/2 c=(s*s+t*t)/2 因为最大数c=(…
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9则输出4. 好了!把所用知识点说一下: 数论之勾股数组(毕达哥拉斯三元组) 本原勾股数组(a,b,c)(a为奇数,b偶数)都可由如下公式得出:a=st,b=(s²-t²)/2, c = (s²+t²)/2, 其中s>t>=1是没有公因数的奇数. 再把勾股数公式拿过来: 套路一: 当a为大于1的奇数…
本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为奇数.这里我们设b为偶数) 则:和 a=st b=(s*s-t*t)/2 c=(s*s+t*t)/2 其中s>t>=1且gcd(s,t)=1 是一一对应的. 看看别人得证明: http://blog.csdn.net/loinus/article/details/7824841 看看我的证明 有了…
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 Source 這道題可用本原勾股數組解,由於本原…
题意: 给定一个整数L(L<=1e12),计算(x,y,z)组的个数.其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1. 思路: 以下的方法可用来找出勾股数.设m>n . m 和 n 均是正整数, a = m^2-n^2    b = 2mn   c = m^2+n^2 若 m 和 n 是互质,而且 m 和 n 其中有一个是偶数,计算出来的 (a, b, c) 就是素勾股数 然后我们需要的便是计算m,n互质 qie m,…
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=42  Fermat vs. Pythagoras  Background Computer generated and assisted proofs and verification occupy a small niche in the realm…
题意 给定一个圆\(x^2+y^2=z^2\),求圆周上有多少个点的坐标是整数. \(r\leq 2*10^9\) 分析 这道题目关键要知道一些勾股数的性质,剩下的就很好处理了. 勾股数的性质 参考:勾股数的基本组及其性质 定义1 如果正整数\(a\),\(b\),\(c\)能满足不定方程\(a^2+b^2=c^2\),则它们叫一组勾股数,用\([a,b,c]\)表示. 定义2 如果\([a,b,c]\)为一勾股数组,且\((a,b)=1\),则\([a,b,c]\)叫一个勾股数的基本组:全体勾…
断断续续的学习数论已经有一段时间了,学得也很杂,现在进行一些简单的回顾和总结. 学过的东西不能忘啊... 1.本原勾股数: 概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b^2=c^2 首先,这种本原勾股数的个数是无限的,而且构造的条件满足: a=s*t,b=(s^2-t^2)/2,c=(s^2+t^2)/2 其中s>t>=1是任意没有公因数的奇数! 由以上概念就可以导出任意一个本原勾股数组. 2.素数计数(素数定理) 令π(x)为1到x中素数的个数 19世纪最高的…
暂时搞不到<Programming Erlang>,最近就一直在看Erlang自带的例子和Reference Manual.基础语法方面有一些过去遗漏或者没有注意的,断断续续仅记于此. 1.Erlang的保留字有: after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse query receive rem try when xor 基本都是些用于…