hadoop编译map/reduce时的问题】的更多相关文章

参考链接 http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html http://blog.endlesscode.com/2010/06/16/simple-demo-of-mapreduce-in-java/ When you run a hadoop jar this is the command which you should run in the directory you put the jar in (e.g…
大文本 通过 hadoop spark map reduce   获取 特征列  的 属性值  计算速度…
最近在做报表统计,跑hadoop任务. 之前也跑过map/reduce但是数据量不大,遇到某些map/reduce执行时间特别长的问题. 执行时间长有几种可能性: 1. 单个map/reduce任务处理的任务大. 需要注意每个任务的数据处理量大小不至于偏差太大.可以切割部分大文件. 2. map数量过多, reduce拉取各方数据慢 这种情况,可以在中间加一轮map过程A. 即map -> mapA - > reduce,来减少reduce拉取数据的源头的个数. 3. 遇到了执行慢节点 had…
在上一篇博客:hadoop入门级总结一:HDFS中,简单的介绍了hadoop分布式文件系统HDFS的整体框架及文件写入读出机制.接下来,简要的总结一下hadoop的另外一大关键技术之一分布式计算框架:Map/Reduce. 一.Map/Reduce是什么: Map/Reduce是在2004年谷歌的一篇论文中提出大数据并行编程框架,由两个基本的步骤Map(映射)和Reduce(化简)组成,Map/Reduce由此得名.同时,由于它隐藏了分布式计算中并行化.容错.数据分布.负载均衡等内部细节,实际的…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由@从流域到海域翻译,发表于腾讯云+社区 map()和reduce()是在集群式设备上用来做大规模数据处理的方法,用户定义一个特定的映射,函数将使用该映射对一系列键值对进行处理,直接产生出一系列键值对. Map Reduce和流处理 Hadoop的Map / Reduce模型在并行处理大量数据方面非常出色.它提供了一个通用的分区机制(基于数据的关键)来分配不同机器上的聚合式工作负载.基本上, map / reduce的算法设计都是关…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re…
马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动 马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作 马士兵hadoop第三课:java开发hdfs 马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解 马士兵hadoop第五课:java开发Map/Reduce 配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)把HADOOP_HOME/bin加到PATH环境变量(非…
原文地址:https://blog.csdn.net/liyong199012/article/details/25423221 一.    概念知识介绍 Hadoop MapReduce是一个用于处理海量数据的分布式计算框架.这个框架解决了诸如数据分布式存储.作业调度.容错.机器间通信等复杂问题,可以使没有并行 处理或者分布式计算经验的工程师,也能很轻松地写出结构简单的.应用于成百上千台机器处理大规模数据的并行分布式程序. Hadoop MapReduce基于“分而治之”的思想,将计算任务抽象…
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…