https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么我们就需要引入一个整除分块! 首先预处理欧拉函数的前缀和,然后丢进分块里面搞一搞. 那么就是 \(O(n+t\sqrt{n})\) #include<bits/stdc++.h> using namespace std; #define ll long long #define N 4000005…
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i][k|j][({i\over k},{j\over k})=1]=\sum\limits_{i=1}^{a\over k}\sum\limits_{j=1}^{b\over k}[(i,j)=1]\] 继续化简 \[\sum\limits_{i=1}^{b\over k}\sum\limits_{…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==p] $ 由套路: \(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}…
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\dfrac{ij}{\gcd(i,j)\gcd(i,j)})^{f(type)} \] 也就是说我们需要算出以下四项式子的值: \[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{f…
公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦,看起来是\(O(N^2)\)的辣鸡复杂度,我们考虑这个问题的弱化版 求\[\sum_{i=1}^n\sum_{j=1}^n(i,j)\] 然后通过一些优美的容斥就可以算出原答案 现在我们设\[f(d)=\sum_{i=1}^n\sum_{j=1}^n[(i,j)=d]\] 这个式子表示,在\(i=1…
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i,j)^k\) 首先加方括号,枚举g,提g:(\(min\)表示\(min(n,m)\)) \(\sum\limits_{g=1}^{min} g^k \sum\limits_{i=1}^{n} \sum\limits_{i=1}^{m} [gcd(i,j)==g]\) \(\sum\limits_{…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[gcd(i,j)==1]$ 令f(n)为gcd是n的个数,g(n)为gcd是n或n的倍数的个数.…
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rfloor\lfloor\frac{b}{n}\rfloor$$ 根据莫比乌斯反演定理可以推出$$f(n)=\sum_{n|k}\mu(\lfloor\frac{k}{n}\rfloor)g(k)$$ 那么可以发现$ans=f(d)$ 然后用推出来的结论带进去 $$ans=\sum_{d|k}\mu(\l…