题目大意 给定一条数轴. 数轴上有\(n\)个点, 它们的初始位置给定, 移动速度也给定. 从0时刻开始, 所有点都从其初始位置按照其移动速度向数轴正方向移动. 这些点开始时可能是红色的, 也可能是黑色的, 这由你来决定, 也就是说这些点的颜色状态有\(2^n\)种; 假如某一时刻一个黑色的点与一个红色的点处于同一位置时, 则这个黑色的点会变成红色. 问有这\(2^n\)中状态中有多少满足最终所有点都变成红色. \(n \le 10^5\), 点的速度和位置\(\le 10^9\) 题解 开始时…