reduce的数目到底和哪些因素有关】的更多相关文章

  reduce的数目到底和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢? 设置mapred.tasktracker.reduce.tasks.maximum的大小可以决定单个tasktracker一次性启动reduce的数目,但是不能决定总的reduce数目. conf.setNumReduceTasks(4);JobConf对象的这个方法可以用来设定总的reduce的数目,看下Job Counters的统计:…
注意标题:Map Task数目的确定和Reduce Task数目的指定————自然得到结论,前者是后者决定的,后者是人为指定的.查看源码可以很容易看懂 1.MapReduce作业中Map Task数目的确定: 1)MapReduce从HDFS中分割读取Split文件,通过Inputformat交给Mapper来处理.Split是MapReduce中最小的计算单元,一个Split文件对应一个Map Task2)默认情况下HDFS种的一个block,对应一个Split.3)当执行Wordcount时…
reduce的数目到底和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢?  设置mapred.tasktracker.reduce.tasks.maximum的大小可以决定单个tasktracker一次性启动reduce的数目,但是不能决定总的reduce数目. Job Counters Data-local map tasks=2 Total time spent by all maps waiting after…
reduce的数目究竟和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢?  设置mapred.tasktracker.reduce.tasks.maximum的大小能够决定单个tasktracker一次性启动reduce的数目,可是不能决定总的reduce数目. conf.setNumReduceTasks(4);JobConf对象的这种方法能够用来设定总的reduce的数目,看下Job Counters的统计: J…
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体来说,存在一个抽象类:TaskScheduler,主要负责分配任务,继承该类的有几个类: CapacityTaskScheduler.FairScheduler.JobQueueTaskScheduler(LimitTasksPerJobTaskScheduler又继承于该类). 从名字大致可以看出…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解Mapper和Reducer接口,应用通常须要提供map和reduce方法以实现他们. 接着我们须要对JobConf, JobClient,Partitioner,OutputCollector,Reporter,InputFormat,OutputFormat,OutputCommitter等进行讨…
核心功能描述 应用程序通常会通过提供map和reduce来实现 Mapper和Reducer接口,它们组成作业的核心. Map是一类将输入记录集转换为中间格式记录集的独立任务. 这种转换的中间格式记录集不需要与输入记录集的类型一致.一个给定的输入键值对可以映射成0个或多个输出键值对.Hadoop Map/Reduce框架为每一个InputSplit产生一个map任务,而每个InputSplit是由该作业的InputFormat产生的. 什么是InputSplit?InputSplit是指分片,在…
二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很大程度上,是为各种分布式计算需求所服务的.我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分布式计算上,我们可以将其视为增 加了分布式支持的计算函数.从计算的角度上看,Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的输出文件. 而从分布式的角度…
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…