1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD val linesRDD = sc.textFile("yangsy.txt") 3.过滤 filter 需要注意的是 filter并不会在原有RDD上过滤,而是根据filter的内容重新创建了一个RDD val spark = linesRDD.filter(line => lin…
1.看到 这篇总结的这么好, 就悄悄的转过来,供学习 wordcount.toDebugString查看RDD的继承链条 所以广义的讲,对任何函数进行某一项操作都可以认为是一个算子,甚至包括求幂次,开方都可以认为是一个算子,只是有的算子我们用了一个符号来代替他所要进行的运算罢了,所以大家看到算子就不要纠结,他和f(x)的f没区别,它甚至和加减乘除的基本运算符号都没有区别,只是他可以对单对象操作罢了(有的符号比如大于.小于号要对多对象操作).又比如取概率P{X<x},概率是集合{X<x}(他是属…
总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pyspark库为例. RDD 的操作函数(operation)主要分为2种类型 Transformation 和 Action,如下图: Transformation 操作不是马上提交 Spark 集群执行的,Spark 在遇到 Transformation 操作时只会记录需要这样的操作,并不会去执行,…
cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY.因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后…
Transformation算子 基本的初始化 java static SparkConf conf = null; static JavaSparkContext sc = null; static { conf = new SparkConf(); conf.setMaster("local").setAppName("TestTransformation"); sc = new JavaSparkContext(conf); } scala private v…
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine…
map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U]  map(func) Return a new distributed dataset formed by passing each element of the source through a function func.  将原RDD中的…
转载自:http://blog.csdn.net/qingyang0320/article/details/51603243 针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]):…
针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): UAggregate the elements of each partition, and then the result…
1. Spark的RDD RDD(Resilient Distributed Datasets),弹性分布式数据集,是对分布式数据集的一种抽象. RDD所具备5个主要特性: 一组分区列表 计算每一个数据分片的函数 RDD上的一组依赖 对于Key Value 对的RDD,会有一个Partitioner, 这是数据的分区器,控制数据分区策略和数量 一组Preferred Location信息(如HDFS 上的数据块地址) 上图是一个简单的CoGroupedRDD满足了RDD 5个特性   2. RD…