一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边…
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数.…
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2194090a96bbed2db1351de8.html 基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连…
tarjan算法的应用. 还需多练习--.遇上题目还是容易傻住 对于tarjan算法中使用到的Dfn和Low数组. low[u]:=min(low[u],dfn[v])--(u,v)为后向边,v不是u的子树: low[u]:=min(low[u],low[v])--(u,v)为树枝边,v为u的子树: 1.求割点: 割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 原理:若low[v]>=dfn[u],则u为割点.因low[v]>=dfn[u],则说明v通过子孙无法到达u的祖先.那么…
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称i和j是连通的.如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向.如果图中任意两点都是连通的,那么图被称作连通图.如果此图是有向图,则称为强连通图(注意:需要双向都有路径).图的连通性是图的基本性质. --摘自度娘 通俗易懂,不在解释. 举个例子吧: 如上图,各个节点皆可以到达任意节点,…
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的边以后.原图变成多个连通块.就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必定会分裂为两个或两个以上的子图. 5.割边集合:假设有一个边集合.删除这个边集合以后,原图变成多个连通块.就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最…
前言 图论中联通性相关问题往往会牵扯到无向图的割点与桥或是下一篇博客会讲的强连通分量,强有力的\(Tarjan\)算法能在\(O(n)\)的时间找到割点与桥 定义 若您是第一次了解\(Tarjan\)算法,建议您反复阅读定义,借助图像来理解 桥与割边 对于无向连通图中点集的一个节点\(x\),删去节点\(x\)及其关联的边之后,存在一对不联通的点对\((a,b)\),则称\(x\)是这个无向图的割点 对于无向联通图中边集的一条边\(e\),删去边\(e\)之后,存在一对不联通的点对\((a,b)…
tarjan算法是在dfs生成一颗dfs树的时候按照访问顺序的先后,为每个结点分配一个时间戳,然后再用low[u]表示结点能访问到的最小时间戳 以上的各种应用都是在此拓展而来的. 割点:如果一个图去掉某个点,使得图的连通分支数增加,那么这个点就是割点 某个点是割点,当且仅当这个点的后代没有连回自己祖先的边.即low[v] >= dfn[u]     , v是u的后代 需要注意的是根结点的特判,因为根结点没有祖先,根结点是割点,当且仅当根结点有两个以上的儿子. 问题:重边对该算法有影响吗?没有影响…
tarjan算法 原理: 我们考虑 DFS 搜索树与强连通分量之间的关系. 如果结点 是某个强连通分量在搜索树中遇到的第⼀个结点,那么这个强连通分量的其余结点肯定 是在搜索树中以 为根的⼦树中. 被称为这个强连通分量的根. 反证法:假设有个结点 在该强连通分量中但是不在以 为根的⼦树中,那么 到 的路径中肯 定有⼀条离开⼦树的边.但是这样的边只可能是横叉边或者反祖边,然⽽这两条边都要求指向的结点已 经被访问过了,这就和 是第⼀个访问的结点⽭盾了.得证. 思路: 在 Tarjan 算法中为每个结点…
Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/5872257.html该算法的手动模拟详细 再Tarjan算法中,有如下定义. DFN[ i ] : 在DFS中该节点的时间戳 LOW[ i ] : 为i能追溯到最早的时间戳 在一个无向图中,如果有一个顶点,删除这个顶点以及这个顶点相关联的边以后,图的连通分量增多,就称这个点为割点. 割点伪代码: tarja…