[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Date:Aug 27th 2011 HQU -----------------------------------------------------------------------------------------------------------------------------…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义:         至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 这篇文章主要参考的是http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb 可以算是对它…
http://blog.sina.com.cn/s/blog_74a459380101r0yx.html opencv2 矩阵方式 resize图像缩放代码(转载) (2014-05-16 09:55:35) 转载▼   分类: Opencv_Function 最近学习opencv的时候遇到的一些技术问题,拿出来分享一下.opencv1和opencv2最大的区别就是c++支持,这使得网上有些资料是opencv1的c语言写的,而有些人喜欢c++,当然接口函数也就不同了.下面是一个c++的openc…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
本科毕设做的是医学CT图像特征提取方法研究,主要是肺部CT图像的特征提取.由于医学图像基本为灰度图像,因此我将特征主要分为三类:纹理特征,形态特征以及代数特征,每种特征都有对应的算法进行特征提取. 如上图所示,三类特征都有对应方法进行特征提取,在毕设中,利用matlab编程实现了三类算法,并且利用matlab的GUI做出了一个简单的界面系统,用于特征提取.…
VGG16提取图像特征 (torch7) VGG16 loadcaffe torch7 下载pretrained model,保存到当前目录下 th> caffemodel_url = 'http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel'  th> proto_url='https://gist.github.com/ksimonyan/211839e770f7b53…
SAR是主动式侧视雷达系统,且成像几何属于斜距投影类型.因此SAR图像与光学图像在成像机理.几何特征.辐射特征等方面都有较大的区别.在进行SAR图像处理和应用前,需要了解SAR图像的基本特征. 本文主要包括: 成像散射特征 SAR几何特征 SAR图像特征   1.成像散射特征 SAR图像上的信息是地物目标对雷达波束的反映,主要是地物目标的后向散射形成的图像信息.反映SAR图像信息的灰度值主要受后向散射的影响,而影响后向散射的主要因素分为两大类: 雷达系统的工作参数:主要包括雷达传感器的工作波长.…
这个全新的Python音乐创作系列,将会不定期更新.写作这个系列的初衷,是为了做一个项目<基于图像特征的音乐序列生成模型>,实时地提取照片特征,进行神经网络处理,生成一段音乐. 千里之行,始于足下.首先我们要做的是,音乐序列怎么在计算机中表达出来. ============== 首先参考知乎上的相关回答,以及PyPI上和音乐相关的第三方库. 来源:https://www.zhihu.com/question/24590883 另见:https://wiki.python.org/moin/Py…
第三讲_图像特征与描述Image Feature Descriptor 概要 特征提取方法 直方图 对图片数据/特征分布的一种统计:对不同量进行直方图统计:可以表示灰度,颜色,梯度,边缘,形状,纹理,局部特征等 灰度直方图:对量化的bin需要人工选择:量化过宽过窄都不好 聚类 混合样本集中内在群组关系 常用方法:Kmeans,EM算法,Mean Shift;谱聚类,层次聚类等 贪心算法,经常陷入局部最优解(非全局最优) K值和初始中心点选择 颜色特征 量化颜色直方图:适用于RGB,HSV等均匀空…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
图像特征描述 什么是图像特征 可以表达图像中对象的主要信息.并且以此为依据可以从其它未知图像中检测出相似或者相同对象 常见的图像特征 常见的图像特征  边缘  角点  纹理 图像特征描述  描述子生成 提取方法 特征提取与描述  SIFT  SURF  HOG  Haar  LBP  KAZE  AKAZE  BRISK DDM  Detection  Description  Matching…
转载地址:http://www.cnblogs.com/skyseraph/archive/2011/08/27/2155776.html 一 原理 1 概念:GLCM,即灰度共生矩阵,GLCM是一个L*L方阵,L为源图像的灰度级 2 含义:描述的是具有某种空间位置关系的两个像素的联合分布,可看成两个像素灰度对的联合直方图,是一种二阶统计 3 常用的空间位置关系:有四种,垂直.水平.正负45° 4 常用的GLCM特征特征: (1)能量:  是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究…
当前图像视觉各个领域文献资料的索引,包含计算机视觉.图像处理.文本(图像)分析.视频分析.模式识别等主题.如果对哪个方向比较感兴趣,可以查看这个方向的比较重要的Paper,每一个大的目录后面都对应一些更细的研究方向,选择某个研究方向就能获得该领域从经典到最新的文献资料索引. 1:帮助和FAQ 版权声明,怎样找到文章.介绍等. 2:期刊会议组织 期刊列表,会议名称列表,研究组织 3:综合信息         书籍,合集,回顾,综述,概述 4:理念.基础.传感 计算机视觉,正则化,连接主义,形态学,…
随着“平安城市”的广泛建设,各大城市已经建有大量的视频监控系统,虽然监控系统己经广泛地存在于银行.商场.车站和交通路口等公共场所,但是在公安工作中,由于设备或者其他条件的限制,案情发生后的图像回放都存在图像不清晰,数据不完整的问题,无法为案件的及时侦破提供有效线索.经常出现嫌疑人面部特征不清晰,难以辨认,嫌疑车辆车牌模糊无法辨认等问题.这给公安部门破案.法院的取证都带来了极大的麻烦.随着平安城市的推广.各地各类监控系统建设的进一步推进,此类问题会越来越突出. 一.模糊图像产生的原因 1.  系统…
在行为识别的iDT算法中,主要使用了HOG,HOF,MBH和Dense Trajectory四种特征.这里主要对前三者进行介绍. 1. HOG特征(histogram of gray) 此处HOG特征的介绍转载了zouxy09大神的文章  http://blog.csdn.NET/zouxy09/article/details/7929348/ 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.…
1.HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主要…
1:基于泊松方程的图像融合方法,利用偏微分方程实现了不同图像上区域的无缝融合.比较经典的文章: P. Pérez, M. Gangnet, A. Blake. Poisson image editing. ACM Transactions on Graphics (SIGGRAPH’03), 22(3):313-318, 2003. 下载地址(paper+matlab代码): 泊松融合 2:泊松融合的一个基本介绍          http://blog.sina.com.cn/s/blog_4…
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享的paper.code或者数据集不多,暂时没收录了. 2)排名按照字母顺序 3)主要按照博客的域名进行分类,不代表作者当前工作所在机构 4)更新日期有可能不是最最新的日期,供参考 1        美国 1.1     MIT 1.1.1   Antonio Torralba MIT助理教授Anto…
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc…
Bag-of-words简单介绍 最初的Bag-of-words ,也叫做"词袋",在信息检索中,Bag-of-words model假定对于一个文本,忽略其词序和语法,句法,将其只看做是一个词集合,或者说是词的一个组合,文本中每一个词的出现都是独立的,不依赖于其它词是否出现. 应用于文本的BoW简单实例 John likes to watch movies. Mary likes too. John also likes to watch football games. 依据上述两句…
# -*- coding: utf-8 -*- #2018-2-19 14:30:30#Author:Fourmi_gsj import cv2 import numpy as np import pylab as pl from PIL import Image import skimage.io as io from skimage import data_dir,data,filters,color,morphology import matplotlib.pyplot as plt fr…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内…
[普兒原创, 如有错误和纰漏欢迎指正. 更新中...] 1. 颜色直方图 颜色空间在本质上是定义在某种坐标系统下的子空间,空间中的每一个坐标表示一种不同的颜色.颜色空间的目的在于给出某种颜色标准,使得不同的设备和用途都能对颜色有一致的描述.这里主要介绍两种不同的颜色空间,包括RGB颜色空间和CIE-Lab颜色空间,如图4-2所示. (a)RGB颜色空间; (b)CIE-Lab颜色空间 图1 颜色空间示意图 RGB颜色空间是定义在三维笛卡尔坐标系中的颜色模型,每一种颜色定义在3个主颜色分量红(R)…
D:\文件及下载相关\文档\Visual Studio \Projects\image_match3\image_match #include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "…