数据仓库分层ODS DW DM 主题 标签】的更多相关文章

数据仓库知识之ODS/DW/DM - xingchaojun的专栏 - CSDN博客 数据仓库为什么要分层 - 晨柳溪 - 博客园 数据仓库的架构与设计 - Trigl的博客 - CSDN博客 数据仓库主题设计及元数据设计 - 数据库其他综合 - 红黑联盟 数据仓库 主题 标签 设计_百度搜索 数据仓库的模型设计 - zhaojike - CSDN博客 [漫谈数据仓库] 如何优雅地设计数据分层 - 51CTO.COM ODS DW DM 规范_百度搜索 数据仓库规范 数据仓库 规范_百度搜索 […
转载http://bigdata.51cto.com/art/201710/554810.htm 一.文章主题 本文主要讲解数据仓库的一个重要环节:如何设计数据分层!其它关于数据仓库的内容可参考之前的文章. 本文对数据分层的讨论适合下面一些场景,超过该范围场景 or 数据仓库经验丰富的大神就不必浪费时间看了. 数据建设刚起步,大部分的数据经过粗暴的数据接入后就直接对接业务. 数据建设发展到一定阶段,发现数据的使用杂乱无章,各种业务都是从原始数据直接计算而得. 各种重复计算,严重浪费了计算资源,需…
原文链接:https://www.jianshu.com/p/72e395d8cb33 今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性数据 DW——数据仓库 DM——数据集市 1.数据中心整体架构 数据中心整体架构 数据仓库的整理架构,各个系统的元数据通过ETL同步到操作性数据仓库ODS中,对ODS数据进行面向主题域建模形成DW(数据仓库),DM是针对某一个业务领域建立模型,具体用户(决策层)查看DM生成的报表. 2.数据仓库的O…
整体结构 在具体分析数据仓库之前先看下一下数据中心的整体架构以及数据流向   数据中心整体架构.png DB 是现有的数据来源,可以为mysql.SQLserver.文件日志等,为数据仓库提供数据来源的一般存在于现有的业务系统之中. ETL的是 Extract-Transform-Load 的缩写,用来描述将数据从来源迁移到目标的几个过程: Extract,数据抽取,也就是把数据从数据源读出来. Transform,数据转换,把原始数据转换成期望的格式和维度.如果用在数据仓库的场景下,Trans…
数据仓库的重要应用是将不同来源的数据和异构数据通过ETL整合在一起,为决策分析提供支撑,若在同一个数据库中分不同用户,此意义不大:假设所有有用户都在一个数据库里,如果因为某个原因数据库重启,那么会影响所有的应用,这违背了 SOA 设计理念中低耦合的思路,当然建在不同的库也是不好的,比如我们要有下钻操作,需要从DW层下钻到ODS层,多个库不方便查询和关联. 在当今这样一个信息技术发展迅速的时代,数据量也在不断的增长,面临这样的压力,总是会有大神提出一些解决方案.比如高层管理人员希望能查看整个公司的…
这两天接触到ODS,开始很纳闷,有了DW(Data Warehouse)干嘛还要ODS(Operational Data Store),于是不查不知道,一查吓一跳,这里面还有这么多道道,这里总结一下,当作学习了. 简单说: DW 数据仓库存储是一个面向主题的,反映历史变化数据,用于支撑管理决策. ODS 操作型数据存储,存储的是当前的数据情况,给使用者提供当前的状态,提供即时性的.操作性的.集成的全体信息的需求. ODS作为数据库到数据仓库的一种过渡形式,与数据仓库在物理结构上不同,能提供高性能…
1.数据仓库DW 1.1简介 Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源.为了决策需要而产生的,它是一整套包括了etl.调度.建模在内的完整的理论体系.数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,听且提供直观易懂的查询结果.比较流行的有:AWS Redshift,Greenplum,Hive等.…
1. 引言 本篇主要讲述操作数据存储(ODS)系统产生的背景.定义.特点,以及它与数据仓库的区别.在前两篇,笔者介绍了什么是数据仓库?为什么需要数据仓库?数据仓库系统的体系结构是什么?因此可能在读者心里已经形成了企业数据存储的DB~DW两层体系结构的概念,但在实际应用中,并不总是这样,有时候我们可能需要ODS这一系统来搭建DB~ODS~DW三层数据体系,那么什么是ODS?为什么需要ODS?ODS与DW的区别又是什么?下面将在第2-6节介绍ODS的理论知识,在第7节以电信运营商为例介绍ODS的实际…
1. 引言 本篇主要讲述操作数据存储(ODS)系统产生的背景.定义.特点,以及它与数据仓库的区别. 在前两篇,笔者介绍了什么是数据仓库?为什么需要数据仓库?数据仓库系统的体系结构是什么?因此可能在读者心里已经形成了企业数据存储的DB~DW两层体 系结构的概念,但在实际应用中,并不总是这样,有时候我们可能需要ODS这一系统来搭建DB~ODS~DW三层数据体系,那么什么是ODS?为什么需要 ODS?ODS与DW的区别又是什么?下面将在第2-6节介绍ODS的理论知识,在第7节以电信运营商为例介绍ODS…
我在公司的数据部门工作,每天的订单类数据处理流程大致如下: 删除分析数据库的历史订单数据 全量更新订单数据到分析数据库.(由于订单核心数据不大,所以经受得起这么折腾) 将数据简单清洗,并生成数据集市层 分析处理,产出报表.当然还有其他的数据也是这么处理的(比如产品的数据.景区的数据.票种的数据.供应商的数据等等) 还有日志类的数据,这里不是重点,就不介绍了!这么干了一年,发现有如下问题: 业务变化很快,比如业务数据表经常变化字段含义.增加各种逻辑数据等 业务数据源越来越多,随着品类越来越多,新部…