Linux性能优化实战(二)】的更多相关文章

一.优化方向 1,性能指标 从应用负载的视角出发,考虑"吞吐"和"延时" 从系统资源的视角出发,考虑资源使用率.饱和度等 2,性能优化步骤 选择指标评估应用程序和系统的性能: 为应用程序和系统设置性能目标: 进行性能基准测试: 性能分析定位瓶颈: 优化系统和应用程序: 性能监控和告警. 3,Linux性能工具图谱 二.平均负载 1,stress 安装命令:apt install stress stress 是一个linux系统压力测试工具,这里我们用作异常进程模拟平…
一.上节回顾 上一节,我带你一起梳理了,性能问题分析的一般步骤.先带你简单回顾一下. 我们可以从系统资源瓶颈和应用程序瓶颈,这两个角度来分析性能问题的根源. 从系统资源瓶颈的角度来说,USE 法是最为有效的方法,即从使用率.饱和度以及错误数这三个方面,来分析 CPU.内存.磁盘和文件系统 I/O.网络以及内核资源限制等各类软硬件资源.至于这些资源的分析方法,我也带你一起回顾了,咱们专栏前面几大模块的分析套路. 从应用程序瓶颈的角度来说,可以把性能问题的来源,分为资源瓶颈.依赖服务瓶颈以及应用自身…
一.上节总结 专栏更新至今,四大基础模块的第三个模块——文件系统和磁盘 I/O 篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,并且热情地留言与讨论. 今天是性能优化的第四期.照例,我从 I/O 模块的留言中摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的二维码查看. 二.问题 1:阻塞.非阻塞 I/O 与同步.异步 I/…
一.上节回顾 上一节,我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为.先简单来回顾一下.所谓动态追踪,就是在系统或者应用程序还在正常运行的时候,通过内核中提供的探针,来动态追踪它们的行为,从而辅助排查出性能问题的瓶颈. 使用动态追踪,便可以在不修改代码也不重启服务的情况下,动态了解应用程序或者内核的行为.这对排查线上的问题.特别是不容易重现的问题尤其有效. 在 Linux 系统中,常见的动态追踪方法包括 ftrace.perf.eBPF/BCC 以及 SystemTap 等. 使用 p…
一.性能优化方法论 不可中断进程案例 二.怎么评估性能优化的效果? 1.评估思路 2.几个为什么 1.为什么要选择不同维度的指标? 应用程序和系统资源是相辅相成的关系 2.性能优化的最终目的和结果? 好的应用程序 3.为什么必须要使用应用程序的指标,来评估性能优化的整体效果? 系统优化总是为应用程序服务的 4.为什么需要用系统资源的指标,来观察和分析瓶颈的来源 系统资源的使用情况是影响应用程序性能的根源 三.多个性能问题同时存在,要怎么选择? 四.有多种优化方法时,要如何选择? 五.系统优化 六…
一.上节回顾 专栏更新至今,四大基础模块的最后一个模块——网络篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,热情地留言和互动.还有不少同学分享了在实际生产环境中,碰到各种性能问题的分析思路和优化方法,这里也谢谢你们. 今天是性能优化答疑的第五期.照例,我从网络模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的…
一.上节回顾 不知不觉,我们已经学完了整个专栏的四大基础模块,即 CPU.内存.文件系统和磁盘 I/O.以及网络的性能分析和优化.相信你已经掌握了这些基础模块的基本分析.定位思路,并熟悉了相关的优化方法. 接下来,我们将进入最后一个重要模块—— 综合实战篇.这部分实战内容,也将是我们对前面所学知识的复习和深化. 我们都知道,随着 Kubernetes.Docker 等技术的普及,越来越多的企业,都已经走上了应用程序容器化的道路.我相信,你在了解学习这些技术的同时,一定也听说过不少,基于 Dock…
一.上节回顾 上一节,我们一起回顾了常见的文件系统和磁盘 I/O 性能指标,梳理了核心的 I/O 性能观测工具,最后还总结了快速分析 I/O 性能问题的思路. 虽然 I/O 的性能指标很多,相应的性能分析工具也有好几个,但理解了各种指标的含义后,你就会发现它们其实都有一定的关联. 顺着这些关系往下理解,你就会发现,掌握这些常用的瓶颈分析思路,其实并不难.找出了 I/O 的性能瓶颈后,下一步要做的就是优化了,也就是如何以最快的速度完成 I/O 操作,或者换个思路,减少甚至避免磁盘的 I/O 操作.…
一.上节总结回顾 上一节,我们回顾了经典的 C10K 和 C1000K 问题.简单回顾一下,C10K 是指如何单机同时处理 1 万个请求(并发连接 1 万)的问题,而 C1000K 则是单机支持处理 100 万个请求(并发连接 100 万)的问题. I/O 模型的优化,是解决 C10K 问题的最佳良方.Linux 2.6 中引入的 epoll,完美解决了C10K 的问题,并一直沿用至今.今天的很多高性能网络方案,仍都基于 epoll. 自然,随着互联网技术的普及,催生出更高的性能需求.从 C10…
一.上节回顾 上一节,我们学习了 DNS 性能问题的分析和优化方法.简单回顾一下,DNS 可以提供域名和 IP 地址的映射关系,也是一种常用的全局负载均衡(GSLB)实现方法. 通常,需要暴露到公网的服务,都会绑定一个域名,既方便了人们记忆,也避免了后台服务 IP 地址的变更影响到用户. 不过要注意,DNS 解析受到各种网络状况的影响,性能可能不稳定.比如公网延迟增大,缓存过期导致要重新去上游服务器请求,或者流量高峰时 DNS 服务器性能不足等,都会导致 DNS 响应的延迟增大. 此时,可以借助…