KS,AUC 和 PSI 是风控算法中最常计算的几个指标,本文记录了多种工具计算这些指标的方法. 生成本文的测试数据: import pandas as pd import numpy as np import pyspark.sql.functions as F from pyspark.sql.window import Window from pyspark.sql.types import StringType, DoubleType from pyspark.sql import Sp…
上一篇博文中,我们使用结巴分词对文档进行分词处理,但分词所得结果并不是每个词语都是有意义的(即该词对文档的内容贡献少),那么如何来判断词语对文档的重要度呢,这里介绍一种方法:TF-IDF. 一,TF-IDF介绍 TF-IDF(Term Frequency–Inverse Document Frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,…
系列随笔: (总览)基于商品属性的相似商品推荐算法 (一)基于商品属性的相似商品推荐算法--整体框架及处理流程 (二)基于商品属性的相似商品推荐算法--Flink SQL实时计算实现商品的隐式评分 (三)基于商品属性的相似商品推荐算法--批量处理商品属性,得到属性前缀及完整属性字符串 (四)基于商品属性的相似商品推荐算法--推荐与评分高的商品属性相似的商品 (五)基于商品属性的相似商品推荐算法--算法调优及其他 2020.04.15  补充:协同过滤推荐算法.pptx 提取码:4tds 注:如果…
用于科学计算Python语言真的是amazing! 方法一:直接安装集成好的软件 刚开始使用numpy.scipy这些模块的时候,图个方便直接使用了一个叫做Enthought的软件.Enthought是一家位于美国得克萨斯州首府奥斯汀的软件公司,主要使用Python从事科学计算工具的开发.Enthought里面包含了很多库,不需要你自己安装就可以直接使用了. 其实还又很多Python科学计算的集成软件,比如Python(x, y)和WinPython,个人感觉WinPython还是不错的,里面包…
SQL + Python 面试题:之二(难度:中等)…
一.Numpy概念 Numpy(Numerical Python的简称)是Python科学计算的基础包.它提供了以下功能: 快速高效的多维数组对象ndarray. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数. 用于读写硬盘上基于数组的数据集的工具. 线性代数运算.傅里叶变换,以及随机数生成. 用于将C.C++.Fortran代码集成到Python的工具. 除了为Python提供快速的数组处理能力,Numpy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器.对于数值…
Python科学计算(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1VYs9BamMhCnu4rfN6TG5bg 提取码:2zzk 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · 本书介绍如何用Python开发科学计算的应用程序,除了介绍数值计算之外,还着重介绍如何制作交互式的2D.3D图像,如何设计精巧的程序界面,如何与C语言编写的高速计算程序结合,如何编写声音.图像处理算法等内容.书中涉及的Python扩展库包括Nu…
一.灰度世界算法 ① 算法原理 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,R,G,B三个分量的平均值趋于同一灰度值Gray.从物理意义上讲,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”.颜色平衡算法将这一假设强制应用于待处理图像,可以从图像中消除环境光的影响,获得原始场景图像. 一般有两种方法确定Gray值 1) 使用固定值,对于8位的图像(0~255)通常取128作为灰度值 2) 计算增益系数,分别计算三通道的平…
1. DeepFM算法的提出 由于DeepFM算法有效的结合了因子分解机与神经网络在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,所以越来越被广泛使用. 在DeepFM中,FM算法负责对一阶特征以及由一阶特征两两组合而成的二阶特征进行特征的提取:DNN算法负责对由输入的一阶特征进行全连接等操作形成的高阶特征进行特征的提取. 具有以下特点: 结合了广度和深度模型的优点,联合训练FM模型和DNN模型,同时学习低阶特征组合和高阶特征组合. 端到端模型,无需特征工程. DeepFM 共享相同的…
1. GBDT + LR 是什么 本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical Lessons from Predicting Clicks on Ads at Facebook . 2. GBDT + LR 用在哪 GBDT+LR 使用最广泛的场景是CTR点击率预估,即预测当给用户推送的广告会不会被用户点击. 点击率预估模型涉及的训练样本一般是上亿级别,样本量大,模型常采用速度…