深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上,大家有需要的自行下载,等原作者上传相关code时,我再告诉大家.欢迎大家关注大佬的公众号. https://github.com/RankXiaoLong/PythonVisualization import pandas as pd import datetime import matplotl…
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了相同的准确率.现在,英特尔发布了第三代英特尔 至强 可扩展处理器(代号 Cooper Lake),该处理器集成了支持 BF16 的英特尔 深度学习加速技术(英特尔 DL Boost),可大幅提升训练和推理能力,并且也支持去年推出的英特尔 深度学习 INT8 加速技术. 英特尔和 Facebook 不…
一.jQuery数据缓存基本原理 jQuery数据缓存就两个全局Data对象,data_user以及data_priv; 这两个对象分别用于缓存用户自定义数据和内部数据: 以data_user为例,所有用户自定义数据都被保存在这个对象的cache属性下,cache在此姑且称之为自定义数据缓存: 自定义数据缓存和DOM元素/javascript对象通过id建立关联,id的查找通过DOM元素/javascript元素下挂载的expando属性获得 话不多说,直接上代码.相关思路在代码注释中都有讲解…
对象检测是迄今为止计算机视觉中最重要的应用领域.然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少.小目标物体的定义通常有两种方式.一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小目标.另外一种是相对尺度定义,即以物体在图像中的占比面积比例来判断是否为小目标,例如国际光学工程学会SPIE定义,若目标尺寸小于原图的0.12%则可以判定成小目标. SAHI: Slicing Aid…
* { font-family: "Microsoft YaHei" !important } h1 { color: #FF0 } 15套java架构师.集群.高可用.高可扩 展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布 式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  cloud.Dubbo.Redis.ActiveMQ.Nginx.Mycat…
第一章 Spark 性能调优 1.1 常规性能调优 1.1.1 常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/bin/spark-submit \ --…
很对不起大家,又是一篇乱序的文章,但是满满的干货,来源于实践,相信大家会有所收获.里面穿插一些感悟和生活故事,可以忽略不看.不过听大家普遍的反馈说这是其中最喜欢看的部分,好吧,就当学习之后轻松一下. Redis各种数据结构性能数据对比 测试工具:perf4j 性能指标:平均值,最小值,最大值,方差 对比将814条数据按单条插入到哈希MAP和哈希SET: 对比从814条数据的哈希MAP和哈希SET中判断一个元素是否存在(map的hasKey和set的isMember): 大量数据插入哈希MAP,运…
目录 1. Mini-batch gradient descent 1.1 算法原理 1.2 进一步理解Mini-batch gradient descent 1.3 TensorFlow中的梯度下降 2. Exponentially weighted averages 2.1 伦敦天气温度 2.2 进一步理解Exponentially weighted averages 2.3 偏差修正(bias correction) 3. Gradient descent with momentum(Mo…
背景: 自己的一个网站,由于单表的数据记录高达了一百万条,造成数据访问很慢,Google分析的后台经常报告超时,尤其是页码大的页面更是慢的不行. 测试环境: 先让我们熟悉下基本的sql语句,来查看下我们将要测试表的基本信息 use infomation_schemaSELECT * FROM TABLES WHERE TABLE_SCHEMA = ‘dbname’ AND TABLE_NAME = ‘product’ 查询结果: 从上图中我们可以看到表的基本信息: 表行数:866633平均每行的…
文章转载自:http://www.cnblogs.com/lyroge/p/3837886.html 背景: 自己的一个网站,由于单表的数据记录高达了一百万条,造成数据访问很慢,Google分析的后台经常报告超时,尤其是页码大的页面更是慢的不行. 测试环境: 先让我们熟悉下基本的sql语句,来查看下我们将要测试表的基本信息 use infomation_schemaSELECT * FROM TABLES WHERE TABLE_SCHEMA = ‘dbname’ AND TABLE_NAME…