代码及数据:https://github.com/zle1992/MachineLearningInAction logistic regression 优点:计算代价不高,易于理解实现,线性模型的一种. 缺点:容易欠拟合,分类精度不高.但是可以用于预测概率. 适用数据范围:数值型和标称型. 准备数据: def loadDataSet(): dataMat,labelMat = [],[] with open(filename,"r") as fr: #open file for li…
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python3 写一遍.python3 与python2 不同的地方会在程序中标出. 代码及数据:https://github.com/zle1992/MachineLearningInAction k-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高.对K的取值敏感!!! 适用…
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大学录取. 载入学生数据,第1,2列分别为两次考试结果,第3列为录取情况. % Load Data % The first two columns contain the exam scores and the third column contains the label. data = load(…
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…
Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpreting hypothesis output. 2.3 Decision boundary. 2.3.1 Non-linear decision boundaries. 2.4 Cost function for logistic regression. 2.4.1 A convex logistic r…
一:逻辑回归(Logistic Regression) 背景:假设你是一所大学招生办的领导,你依据学生的成绩,给与他入学的资格.现在有这样一组以前的数据集ex2data1.txt,第一列表示第一次测验的分数,第二列表示第二次测验的分数,第三列1表示允许入学,0表示不允许入学.现在依据这些数据集,设计出一个模型,作为以后的入学标准. 我们通过可视化这些数据集,发现其与某条直线方程有关,而结果又只有两类,故我们接下来使用逻辑回归去拟合该数据集. 1,回归方程的脚本ex2.m: %% Machine…
Logistic Regression 逻辑回归 逻辑回归与线性回归有很多相似的地方.后面会做对比,先将逻辑回归函数可视化一下. 与其所对应的损失函数如下,并将求max转换为min,并转换为求指数形式,便于计算. 最后得到的是两个伯努利分布(function output & target)的交叉熵(两个分布的接近程度,如果分布相同,则交叉熵为0). 经过求导,最后得到的损失函数的偏导数和线性回归的是形式一致的.将其三个步骤的对比归纳如下. 为何用交叉熵而不用平方差,因为逻辑回归模型在求导过程中…
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理. 准备数据:使用Python解析.预处理数据. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化. 测试算法:计算错误率. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类. 实战内容: 海伦女士一直使用在线约会网站寻找适合自己…
https://blog.csdn.net/zengxiantao1994/article/details/72787849似然函数 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用.极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计. 由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ.记已知的样本集…
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是:…