人脸检测及识别python实现系列(2)——识别出人脸 http://www.cnblogs.com/neo-T/p/6430583.html…
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 def face_predict(self, image): #依然是根据后端系统确定维度顺序 if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_im…
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧.前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN.前面我们已经准备好了2000张脸部图像,但没有进行标注,并且还需要将数据加载到内存,以方便输入给CNN.因此,第一步工作就是加载并…
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题——什么是卷积神经网络(CNN)? CNN(Conv…
人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动教孩子学习语言,但随着孩子慢慢长大,自然而然就学会了说话.那么孩子们是怎么学会的呢?很简单,在人类出生之前,有了听觉开始,就开始不断听到各种声音.人类的大脑会自动组织.分类这些不同的声音,形成自己的认识.随着时间的推移,大脑接收到的声音数据越来越多.最终,大脑利用一种我们目前尚未知晓的机制建立了一个…
人脸检测及识别python实现系列(1)——配置.获取实时视频流 1. 前言 今天用多半天的时间把QQ空间里的几篇年前的旧文搬到了这里,算是完成了博客搬家.QQ空间里还剩下一些记录自己数学学习路线的学习日志,属于私人性质,不再搬运了.过完春节,快马加鞭地重修完高阶偏导数后,终于感觉到疲惫了,潜意识里觉得是时候做点东西了,一是练练手,二是换换脑子,用新鲜东西刺激一下自己,好把学习效率保持下去.于是,我选择了自己最感兴趣的人脸识别,期望能够通过摄像头识别出我自己来.正好,前两天济南新闻上说济南火车站…
转自:http://blog.csdn.net/xingchenbingbuyu/article/details/51105159 版权声明:本文为博主原创文章,转载请联系作者取得授权. 本文由@星沉阁冰不语出品,转载请注明作者和出处. 文章链接:http://blog.csdn.net/xingchenbingbuyu/article/details/51105159 微博:http://weibo.com/xingchenbing  之前一直觉得人脸检测是非常麻烦的,即使是用OpenCV,麻…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的人脸: 图 1 动态实时检测效果图 检测到的人脸矩形图像,会依次 平铺显示 在摄像头的左上方: 当多个人脸时候,也能够依次铺开显示: 左上角窗口的大小会根据捕获到的人脸大小实时变化: 图 2 单个/多个人脸情况下摄像头识别显示结果 2. 代码实现 主要分为三个部分: 摄像头调用,利用 OpenCv…