From: http://www.cnblogs.com/bayesianML/p/6377588.html#central_problem You can do it: Dirichlet Process, HDP, HDP-HMM, IBP, CRM, etc. 本文目录结构如下: 核心主题 中心问题 参数估计 模型比较 非贝叶斯方法 最大似然 正则化 EM算法 基本推断算法 MAP估计 Gibbs采样 马尔科夫链蒙特卡洛(MCMC) 变分推断(Variational inference)…
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics…
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet Machine Learning made for .NET ML.NET is a machine learning framework built for .NET developers. Use your .NET and C# or F# skills to easily integrate custom machine learning…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
Machine Learning Crash Course  |  Google Developers https://developers.google.com/machine-learning/crash-course/ Google's fast-paced, practical introduction to machine learning ML Concepts Introduction to Machine Learning As you'll discover, machine…
from:http://analyticsbot.ml/2016/10/machine-learning-pre-processing-features/ Machine Learning : Pre-processing features October 21, 2016 I am participating in this Kaggle competition. It is a prediction problem contest. The problem statement is: How…
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few years, I have tried Linux programming, device driver development, android application development and RF SOC development. Thus, "data analysis become my…
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在这里,我们使用一份皮马印第安女性的医学数据,用来预测其是否会得糖尿病.文件一共有768个样本,我们先剔除缺失值,然后选出20%的样本作为测试样本. 文件下载地址:https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-d…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
Learning Goals Understand why Machine Learning strategy is important Apply satisficing and optimizing metrics to set up your goal for ML projects Choose a correct train/dev/test split of your dataset Understand how to define human-level performance U…