(三)PyTorch学习笔记——softmax和log_softmax的区别.CrossEntropyLoss() 与 NLLLoss() 的区别.log似然代价函数 pytorch loss function 总结 NLLLoss 的 输入 是一个对数概率向量和一个目标标签(不需要是one-hot编码形式的). 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做…
1.softmax 函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 x 是一个实数的向量(正数或负数都无所谓, 没有限制). 然后, 第i个 Softmax(x) 的组成是 exp(xi)∑jexp(xj)exp⁡(xi)∑jexp⁡(xj) 输出是一个概率分布: 每个元素都是非负的, 并且所有元素的总和都是1.2.log_softmax 在softmax的结果上再…
首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Variable对象的操作,操作会被记录,可通过grad_fn属性查看上一次的操作,可通过data属性访问原始张量,grad can be implicitly created only for scalar outputs--------------------- 作者:头发光了你就强了 来源:CSD…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
本文截取自<PyTorch 模型训练实用教程>,获取全文pdf请点击: tensor-yu/PyTorch_Tutorial​github.com 版权声明:本文为博主原创文章,转载请附上博文链接! 我们所说的优化,即优化网络权值使得损失函数值变小.但是,损失函数值变小是否能代表模型的分类/回归精度变高呢?那么多种损失函数,应该如何选择呢?请来了解PyTorch中给出的十七种损失函数吧. 1.L1loss 2.MSELoss 3.CrossEntropyLoss 4.NLLLoss 5.Poi…
pytorch之nn.Conv1d详解 之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下. Conv1dclass torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) – 输入信号的通道.在文本分类中,即为词向量的维度o…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 0 为什么学TF 1 Tensorflow的安装 2 数据集构建 2 预处理 3 构建模型 4 优化器 5 训练与预测 0 为什么学TF 之前的15节课的pytorch的学习,应该是让不少朋友对PyTorch有了一个全面而深刻的认识了吧 (如果你认真跑代码了并且认真看文章了的…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习"中我们介绍了监督学习和无监督学习相关概念.本文主要介绍神经网络常用的损失函数. 以下均为个人学习笔记,若有错误望指出. 神经网络常用的损失函数 pytorch损失函数封装在torch.nn中. 损失函数反映了模型预测输出与真实值的区别,模型训练的过程即让损失函数不断减小,最终得到可以拟合预测训练样…
前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 今年是进入计算机视觉领域的第四年,做公众号的第一年,写了不少原创文章,从国外博客上翻译了不少我认为比较不错的文章,也从知乎上找了不少不错的文章在经作者授权后转载到公众号. 整体上来说,这一年基本保持初心,始终在做一…