原创博客,转载请联系博主! 希望我思考问题的思路,也可以给大家一些启发或者反思! 问题背景: 现在我们的手上有一组没有明确规律,但是分布有明显聚簇现象的样本点,如下图所示: 图中数据集是显然是个3维的数据集,包括横纵坐标和色彩(高度),由于数据的分布比较不均匀,我们选择分布比较典型的[300,305)区间的数据点进行处理 我们的目的是找出这个数据空间中数据比较集中的部分,根据肉眼对样本的初步观察,这篇文章将讨论一个从横轴的维度对数据较密集的区域进行识别的一个轻量算法,其实也就是找出数据空间中的所…
http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问题 由给定样本集合求解随机变量的分布密度函数问题是概率统计学的基本问题之一.解决这一问题的方法包括参数估计和非参数估计. 参数估计 参数估计又可分为参数回归分析和参数判别分析.在参数回归分析中,人们假定数据分布符合某种特定的性态,如线性.可化线性或指数性态等,然后在目标函数族中寻找特定的解,即确定回…
Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致.但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物. kdeplot(核密度估计图) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一.通过核密度…
对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法: 通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布函数,bandwidth通过AMISE规则选取 具体原理及定义:传送门 https://en.wikipedia.org/wiki/Density_estimation MATLAB 代码实现如下: % Kernel Density Estimation % 只能处理正半轴密度 function […
R语言与非参数统计(核密度估计) 核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window). 假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大.核密度估计的方法是这样的: 其中K为核密度函数,h为设定的窗宽. 核密度估计的原理其实是很简单的.在我们对某一事物的概率分布的情况下.如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大…
核密度估计,或Parzen窗,是非参数估计概率密度的一种.比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最高的类别. 直方图 首先从直方图切入.对于随机变量$X$的一组抽样,即使$X$的值是连续的,我们也可以划分出若干宽度相同的区间,统计这组样本在各个区间的频率,并画出直方图.下图是均值为0,方差为2.5的正态分布.从分布中分别抽样了100000和10000个样本: 这里的直方图离散地取了21个相互无交…
一.运动目标检测简介   视频中的运动目标检测这一块现在的方法实在是太多了.运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测.先简单从视频中的背景类型来讨论.        静态背景下的目标检测,就是从序列图像中将实际的变化区域和背景区分开了.在背景静止的大前提下进行运动目标检测的方法有很多,这些方法比较侧重于背景扰动小噪声的消除,如:1.背景差分法2.帧间差分法3.光流法4.混合高斯模型(GMM)5.码本(codebook)还有这些方法的变种,例如三帧…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
EDADS系统包含了众多的时序模型和异常检测模型,这些模型的处理会输入很多参数,若仅使用默认的参数,那么时序模型预测的准确率将无法提高,异常检测模型的误报率也无法降低,甚至针对某些时间序列这些模型将无法使用. 若想有效地使用EGADS系统,那么必须了解EGADS系统的核心算法思想,并据此调优模型参数,来提高异常检测的准确率.降低误报率. 笔者通过阅读EDADS系统的TimeSeries模型和AnomalyDetection模型的源码,整理了模型的处理流程和常用算法的核心思想.如本文有理解错误之处…
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…