5.4 总结与重点 基本的buck,boost以及buck-boost电路的特点总结在表5.2中.其中给出了\(K_{crit}(D)\)的表达式,CCM和DCM下的变换比,以及DCM下二极管导通占空比\(D_{2}\). Tab 5.2 Summary of CCM-DCM characteristics for the buck,boost,and buck-boost converters 图5.20比较了DCM下buck,boost以及buck-boost的直流变换比.其中buck-bo…
引子: 当使用电流单向和/或电压单向半导体开关实现DC-DC变换器的理想开关时,可能会出现一种或多种被称为不连续导电模式(DCM)的新工作模式.当电感电流或电容电压的纹波大到足以导致所施加的开关电流或电压极性反转时,出现的不连续导通的模式,从而这违反了使用半导体器件实现开关时所做出的的电流或者电压单向的假设.DCM通常出现在DC-DC变换器和整流器中,有时也会出现在逆变器或者其他包含两象限开关的变换器中. DCM通常发生在轻载工作且包含电流单向开关的变换器中,电感电流纹波较大.由于通常要求变换器…
4 开关实现 在前面的章节中我们已经看到,可以使用晶体管,二极管来作为Buck,Boost和其他一些DC-DC变换器的开关元件.也许有人会想为什么会这样,以及通常如何实现半导体的开关.这些都是值得被提出的问题,开关的实现可能取决于所执行电源处理的功能.逆变器与Cycloconverter相比这些DC-DC变换器的开关需要更为复杂的实现.同样,实现半导体开关的方式可以通过上一章的理想开关分析所无法预测的方式来改变变换器的性能,例如下一章将会介绍不连续导电模式.本章的主题是使用晶体管和二极管实现开关…
1.1 功率处理概论 电力电子领域关注的是利用电子设备对电力进行处理[1–7].如图1.1所示,其中关键部件就是开关变换器.通常,开关变换器包含电源输入和控制输入端口以及电源输出端口.原始输入功率按控制输入指定的方式进行处理,产生相应的条件输出功率.其可以执行以下几个基本功能之一[2].在DC-DC变换器中,直流输入电压被转换为具有更大或更小幅值的直流输出电压,也可能具有相反的极性,或者具有输入和输出参考地的隔离.在AC-DC整流器中,交流输入电压被整流,产生直流输出电压.可以控制直流输出电压和…
7.3 脉冲宽度调制器建模 我们现在已经达成了本章开始的目标,为图7.1推导了一个有效的等效电路模型.但仍存在一个细节,对脉冲宽度调制(PWM)环节进行建模.如图7.1所示的脉冲宽度调制器可以产生一个能够控制功率晶体管开关或导通的逻辑信号\(\delta(t)\).该逻辑信号\(\delta(t)\)是周期性的,且其频率为\(f_{s}\),占空比为\(d(t)\).脉冲宽度调制器的输入是一个模拟控制信号\(v_{c}(t)\).脉冲宽度调制器的功能为产生一个正比于模拟控制电压\(v_{c}(t…
5.2 变比M分析 经过一些改进,第二章中的用于CCM稳态分析的相同技术和近似方法可以应用于DCM. (a)电感伏秒平衡.电感电压直流分量必须为0: \[<v_{L}>=\frac{1}{T_{s}} \int _{0} ^{T_{s}} v_{L}(t)dt = 0 \tag{5.9} \] (b)电容电荷平衡.电容电流直流分量必须为0: \[<i_{C}>= \frac{1}{T_{s}} \int _{0} ^{T_{s}} i_{C}(t)dt=0 \tag{5.10} \…
5.3 Boost变换器实例 作为第二个示例,考虑图5.12的Boost变换器.让我们来确定不同模式的边界并且求解DCM下的电压变换比.此前在2.3节中分析了在CCM工作的Boost变换器的特性,并确定了电感电流直流分量\(I\)和纹波峰值幅度\(\Delta i_{L}\)的表达式. Fig 5.12 Boost converter example 当二极管导通时,其电流等于电感电流\(i_{L}(t)\),从图2.18可以看出,电感电流的最小值在二极管导通间隔期间,\(DT_{s}<t<T…
6.4 变换器评估与设计 没有完美适用于所有可能应用场合的统一变换器.对于给定的应用和规格,应该进行折中设计来选择变换器的拓扑.应该考虑几种符合规格的拓扑,对于每种拓扑方法,对比较重要的量进行计算,比如最坏情况下的晶体管电压,电流有效值,变压器尺寸等.这种类型的定量比较可以选择最佳方法,同时避免工程师的个人偏好. 6.4.1 开关应力和利用率 通常,变换器中最大的单一成本是有源半导体器件的成本.而且,与半导体器件相关的导通和开关损耗通常占变换器损耗的主体.因此,对于候选变换器而言,比较总有源开关…
7.1 引言 变换器系统总是需要反馈的.例如,在典型的DC-DC变换器应用中,无论输入电压\(V_{g}(t)\)和输出有效负载\(R\)如何变化,都必须使输出电压\(v(t)\)保持恒定.这是通过构建一个可以改变变换器控制输入的回路来完成的[例如:占空比\(d(t)\)],来使得输出电压\(v(t)\)被调节为期望值\(V_{ref}\).在逆变器系统中,反馈回路使得输出电压遵循正弦曲线参考电压.在现代低谐波整流系统中,控制系统使得变换器的输入电流与输入电压成正比.从而使得输入端口对于交流电源…
7.5 状态空间平均 现有文献中已经出现了很多变换器交流建模的方法,其中包括电流注入法,电路平均和状态空间平均法.尽管某种特定方法的支持者可能更愿意使用该方法去建模,但所有方法的最终结果都是等效的.并且所有人都具有这样的共识:平均和小信号的线性化是对PWM变换器建模的关键步骤. 本节将介绍文献中提到的状态空间平均法(S.´Cuk, Modeling, Analysis, and Design of Switching Converters, Ph.D. thesis, California In…