R语言并行计算中的内存控制】的更多相关文章

R语言使用向量化计算,因此非常容易在集群上进行并行计算.parallel 包提供了非常方便的函数用来进行并行计算,但有一个问题是并行时对于内存中的对象会拷贝多份,因此会比较占内存,这里提供一个比较简易的方法在内存中共享对象从而达到降低内存占用的目的. cl<-makeCluster(, type="FORK") result_list <- parLapply(cl, list, function) stopCluster(cl) 非常简单,在创建集群的时候添加type为…
问题描述: 安装包xlsx包后,运行library("xlsx")后弹出错误窗口: RGui (64-bit): Rgui.exe - 系统错误 无法启动此程序,因为计算机中丢失 jvm.dll.尝试重新安装该程序以解决此问题. 在R语言环境中的错误是: 载入需要的程辑包:rJava Error : loadNamespace()里算'rJava'时.onLoad失败了,详细内容: 调用: inDL(x, as.logical(local), as.logical(now), ...)…
R语言编程中的常见错误有一些错误是R的初学者和经验丰富的R程序员都可能常犯的.如果程序出错了,请检查以下几方面. 使用了错误的大小写.help().Help()和HELP()是三个不同的函数(只有第一个是正确的). 忘记使用必要的引号.install.packages("gclus")能够正常执行,然而Install.packages(gclus)将会报错. 在函数调用时忘记使用括号.例如,要使用help()而非help.即使函数无需参数,仍需加上(). 在Windows上,路…
1.下载Xming地址 http://pan.baidu.com/s/1o6ilisU,安装,推荐默认安装在C盘,推荐快捷方式放在与putty快捷方式同一个文件夹: 2.打开putty,在SSH的X11选项中勾选Enable X11 forwarding,保存putty设置: 3.运行Xming,最小化在系统托盘,使用putty进入一个服务器: 4.打开R语言 > x=c(-5:5)> y=x*x> plot(x,y,type='b') 5.绘图显示曲线…
解决办法: 1.如果没有java运行环境,则需安装对应版本的jre,如R64就需要安装jre64位的,并且要注意在系统环境变量中指定java_home 2.如果有java运行环境,检查你的java版本与R版本选择是否一致(要么都是32位,要么都是64位) 3.用R命令直接设置java_home,命令如: Sys.setenv(JAVA_HOME='E:/workspace/JDK/dk1.8.0_31/jre') 注意:是JRE路径,而不是JDK的路径…
ggplot2 是一套独立的绘图系统,在一个完整的ggplot2的图表中,会有下面几个概念: 1) plot 2) panel 3) strip 4) legend 所有这些元素都会出现在图表中 代码示例: ggplot(mpg, aes(displ, cty, colour = cyl)) + geom_point() + facet_grid(. ~ cyl) + theme(plot.background = element_rect(fill = "green", colour…
如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = women)par(mfrow = c(2, 2))plot(fit)par(opar) 为理解这些图形,我们来回顾一下OLS回归的统计假设.(1)正态性(主要使用QQ图) 当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布.正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值…
在R语言编译器中,设置当前工作文件夹可以用setwd()函数. > setwd("e://桌面//")> setwd("e:\桌面\")> setwd("e:/桌面/") 这三种结构都是可以编译通过的, 但是在VS C#中却不行,只有一种能运行成功. (PS:R语言在VS中运行要先配置环境,还没配置的童鞋先要配置好,才可运行,如有问题可看我前面的随笔.) 就是这种结构,engine.Evaluate("setwd('e…
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ========================================================================= 性能提升:速度和内存 要使R代码运行速度更快,有以下建议: 通过向量化的方式优化.使用字节码编译等: 将代码中最消耗CPU的核心部分用编译型语言编写,如C或C++: 将代码用某种并行的方式编写. 消除显示循环: 采用向量化提升速度…
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:…