[Noip2016]蚯蚓 D2 T2 队列】的更多相关文章

[Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐蛐国里现在共有n只蚯蚓(n为正整 数).每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为a_i(i=1,2,...,n),并保证所有的长度都是非负整数(即:可 能存在长度为0的蚯蚓).每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任…
题干 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐蛐国里现在共有n只蚯蚓(n为正整数).每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为a_i(i=1,2,...,n),并保证所有的长度都是非负整数(即:可能存在长度为0的蚯蚓).每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半.神刀手切开蚯蚓的位置由常数p(是满足0<…
传送门 好题. 目测只会多带一个log2(n+m)" role="presentation" style="position: relative;">log2(n+m)log2(n+m)的解法,看了题解之后才会正解. 解析: 我们用三个队列来维护每次弹出的值. 第一个队列就是原数列. 第二个队列是每次砍掉后短的那一节组成的,第三个队列是长的那一节组成的. 显然这三个队列都具有单调性. 那么每次从三个队列中选一个最大的然后压入后两个队列里就行了. 实现…
Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐蛐国里现在共有n只蚯蚓(n为正整 数).每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为a_i(i=1,2,...,n),并保证所有的长度都是非负整数(即:可 能存在长度为0的蚯蚓).每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个) 将其切成两半.神刀手切开蚯蚓…
NC16430 [NOIP2016]蚯蚓 题目 题目描述 本题中,我们将用符号 \(\lfloor c \rfloor\) 表示对 c 向下取整,例如:\(\lfloor 3.0 \rfloor = \lfloor 3.1 \rfloor = \lfloor 3.9 \rfloor = 3\) . 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓. 蛐蛐国里现在共有 n 只蚯蚓(n 为正整数).每只蚯蚓拥有长度,我们设第 i 只蚯蚓的长度为 \(a_…
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0. 当小鸟落回地面(即x轴)时,它就会瞬间消失. 在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi). 如果某只小鸟的飞行…
[NOIP2016]DAY1 T2 天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 N个结点和N-1 条边的树, 每条边连接两个结点,且任意两个结点存在一条路径互相可达.树上结点编号为从1到N的连续正整数. 现在有个玩家,第个玩家的起点为Si ,终点为Ti  .每天打卡任务开始时,所有玩家在第0秒同时从自己的起点出发, 以每秒跑一条边的…
#\(\color{red}{\mathcal{Description}}\) LInk 这道题是个\(zz\)题 #\(\color{red}{\mathcal{Solution}}\) 我们考虑如何得部分分,即十分\(zz\)的\(\Theta((m+n)log(m+n))\),窝萌发现这个复杂度似乎可以接受,但是会爆是真的,所以每当这个时候我们就需要思考问题内部的单调性.我们发现其实对于两条蚯蚓\(A\)和\(B\),设它们的长度为\(L_A\)和\(L_B\),假设他们满足\(L_A <…
题意: 思路: 我们发现,对于任意两次切割i和j,i<j,在进行完第j次切割后,第i次切割的u/v部分一定大于等于第j次切割的u/v部分,第i次的1-u/v部分也一定大于等于第j次的1-u/v部分证明很显然,假设在第i次切割的时候,切割的蚯蚓长度为x,第j次的时候为y+(i-j)q,那么有x>=y,px+(i-j)q显然大于等于p(y+(i-j)q)那么我们维护三个队列,刚开始的时候把所有蚯蚓排序后推到第一个队列里,然后每次取三个队头里最长的,把他弹出来,再把切开的两半分别推入第二和第三个队列…
题目贼长 大意是你有n个线段,每一秒你要拿出来最长的一个线段切成两段长度为[p*u](向下取整)和u-[p*u]两段(其中u是线段长,p是一个大于0小于1的实数)没被切的线段长度加q(0<q<200).问m秒后的n+m条线段的长度(1≤n≤100000,1<=m<=7000000) 题解 乍一看是堆,可是堆被卡了. 我们建三个队列分别装最初的线段,和被切出来的两种线段.可以发现任何时候,一个队列里的线段长度单调递减,最长的线段,就从这三个队列里取出第一个比较就行. #include…