首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)
】的更多相关文章
主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)
一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.(4)可以通过增加"主题"的方式,一定程度的解决上述问题:一个词可能被映射到多个主题中(一词多义),多个词可能被映射到某个主题的概率很高(多词一义) 2.pLSA模型 基于概率统计的pLSA模型(probabilistic latentsemanti…
主题模型之潜在语义分析(Latent Semantic Analysis)
主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结无法人工标注的海量电子文档.较早的主题模型有混合语言模型(Mixture of Unigram),潜在语义索引(Lantent Semantic Index,LSI),概率潜在语义索引(Probabilistic Latent Semantic Indexing,PLSI).主题模型中文档是由主题组…
SK-Learn使用NMF(非负矩阵分解)和LDA(隐含狄利克雷分布)进行话题抽取
英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html 这是一个使用NMF和LDA对一个语料集进行话题抽取的例子. 输入分别是是tf-idf矩阵(NMF)和tf矩阵(LDA). 输出是一系列的话题,每个话题由一系列的词组成. 默认的参数(n_samples/n_features/n_topics)会使这个例子运行数十秒. 你可以尝试修改问题的规模,但是要注…
文本主题模型之潜在语义索引(LSI)
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法.本文关注于潜在语义索引算法(LSI)的原理. 1. 文本主题模型的问题特点 在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类.而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布.从这个方面来说,主题模型和普通的聚类算法非常的类似.但是两者其实还是有区别的. 聚类算法关注于从样本特征的相似度方面将数据聚类.比如通过数据样本之间…
理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 Dirichlet 分布 1 Dirichlet 分布 2 Dirichlet-Multinomial 共轭 主题模型LDA 1 各个基础模型 11 Unigram model 12 Mixture of unigrams model 2 PLSA模型 21 pLSA模型下生成文档 21 根据文档反…
LDA(Latent Dirichlet allocation)主题模型
LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系.一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 它是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出: 同时是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可: 此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它: LDA可以被认为是一种聚类算法: [LDA automatically assig…
通俗理解LDA主题模型
通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是由于这篇文档的前序铺垫太长(如今才意识到这些"铺垫"都是深刻理解LDA 的基础,但假设没有人帮助刚開始学习的人提纲挈领.把握主次.理清思路,则非常easy陷入LDA的细枝末节之中),还是由于当中的数学推导细节太多,导致一直没有完整看完过. 2013年12月,在我组织的Mac…
通俗理解LDA主题模型(boss)
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA…
Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利克雷分布LDA] Spark实现LDA的GraphX基础 在Spark 1.3中,MLlib现在支持最成功的主题模型之一,隐含狄利克雷分布(LDA).LDA也是基于GraphX上构建的第一个MLlib算法,GraphX是实现它最自然的方式. 有许多算法可以训练一个LDA模型.我们选择EM算法,因为它…
LDA概率主题模型
目录 LDA 主题模型 几个重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么确定LDA的topic个数? 如何用主题模型解决推荐系统中的冷启动问题? LDA 这里简单的介绍一下LDA的另一种身份,概率主题模型 隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA)隐含狄利克雷分布(英语:Latent Dirichlet allocation,简称LDA),是一种主题模型,它可以将文档集中每篇…