B - 楼下水题(扩展欧几里德)】的更多相关文章

B - 楼下水题 Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Practice CodeForces 7C Description A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coo…
D - 楼下水题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1258 Description A string is said to be a palindrome if it remains same when read backwards. So, 'abba', 'madam' both are palindromes,…
转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 部分解题报告添加新内容,除了原有的"大致题意"和"解题思路"外, 新增"Source修正",因为原Source较模糊,这是为了帮助某些狂WA的同学找到测试数据库,但是我不希望大家利用测试数据打表刷题 ­­ ­ 推荐文:1.一位ACMer过来人的心得 2. POJ测试数据合集 OJ上的一些水题(可用来练手和增…
这题坑了,我真该吃翔啊,竟然一開始方程设错了并且没有去想连列的问题,我真是坑货,做不出就该又一次理一下嘛.操蛋. 题意:给了N组x,y,z然后 问你是否存在两个或者两个以上的id,是的 id%x的值在区间[y,z]之间.若有则输出Cannot Take off 否则你懂得 依据题意 那么  列出 : a*x1  + y1 <= id <= a*x1 + z1 b * x2 + y2 <= id <= b*x2 + z2, 如果有解的话,那么这两个区间肯定有反复部分.,那么继续推得:…
这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生一样的题目我还是坚持做了几道,然后 看了中国余数定理 跟 中国剩余定理 还有扩展欧几里德的定义以及介绍,这次 这个题目是我自己思考出来的,这个题解是写给自己看的  同时向大家共享,学长说 做数论 要不时的回头 看看以前的题目 做做过了的题目,所以留个纪念 这道题目关节解决句是: 可以这样思考: 对于…
点我看题目 题意 : 中文题不详述. 思路 : 设经过s步后两青蛙相遇,则必满足(x+m*s)-(y+n*s) = K*L(k = 0,1,2....) 变形得:(n-m)*s+K*L = x-y ; 另a = n-m,b = L,c = x-y,则上式变为a*s+b*k = c.于是就变成了扩展欧几里德,求解不定方程,线性同余方程.只要上式存在整数解,则这两个青蛙能相遇,否则不能. #include <stdio.h> #include <string.h> #include &…
A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2017    Accepted Submission(s): 1469 Problem Description 要求(A/B)%9973,但因为A非常大,我们仅仅给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的第一…
这个题乍一看跟剩余定理似的,但是它不满足两两互素的条件,所以不能用剩余定理,也是给了一组同余方程,找出一个X满足这些方程,如果找不到的话就输出-1 因为它不满足互素的条件,所以两个两个的合并,最后合成一个. 题目给定的是 M % m1 = r1 M % m2 = r2 ...... M % mn = rn 只需将两个式子合并成一个式子,那么这个合并的这个式子就可以继续和下面的式子继续合并,知道合到最后一个式子. 首先来看下两个式子怎么合并. M % m1 = r1    可以写成  M = k1…
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定理),关于欧几里德的证明请看上篇. 基本算法:基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by. 证明:设a>b; 1. 显然当b=0,gcd(a, b) = a;此时x=1, y=0;这个就是递…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束.若在有限次内结束,则输出循环次数.否则输出死循环. 题解 原题题意再次缩略: A + xC Ξ B (mod 2k) 求x的最小正整数值. 我们把式子稍微变一下形: Cx + (2k)y = B-A 然后就变成了一个基础的二元一次方程求解,扩展欧几里德套套就可以了. 至于扩展欧几里德(ex…