poj3358数论(欧拉定理)】的更多相关文章

http://poj.org/problem?id=3358 (初始状态为分数形式)小数点进制转换原理:n / m ; n /= gcd( n , m ) ; m/= gcd( n , m ) ; n = n % m ; for( i : 0 to .....) n *= k ; bit[ i ] = n / m;(保留每一位的数值) n %= m ; 题意:求n/m的小数点位的循环数列的长度和起始位置: 现在假设起始循环的第i个数为n,记作ni :那么第j个数n,则是nj:这时循环数列出现,那…
又是一道用欧拉定理解的题..嗯,关键还是要建好方程,注意一些化简技巧 题目大意: 给定一个由 p / q 生成的循环小数,求此循环小数在二进制表示下的最小循环节以及不是循环节的前缀 思路: 小数化为二进制,应该乘2取余, 设从小数的第x位开始有长度为y的循环节, 先把 p/q 化为最简分数,此时p,q互质 则应该满足 同余方程 p*2^x=p*2^(x+y) mod q 整理一下可得  q | p*2^x*(2^y - 1) 由于 p,q互质,则q | 2^x*(2^y - 1) 此时 由于 2…
Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2<=b<=10^{10^6},1<=n<=10^{10^6},1<=c<=10^9\) 简明题解: 因为 \(b\) , \(n\)都太大了.关键是求 \((b)^{n-1}\%c\) 所以,我们可以利用欧拉函数 \(phi()\) 的性质. 对于\(a^{b} \% c\…
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] 否则 当\(b≥\varphi(p)\)时 \[a^b≡a^{b\%\varphi(p)+\varphi(p)}\pmod p \] 这道题里面\(2\)的无穷次方显然会比\(\varphi(p)\)大 所以,递归调用这个公式 因此每次\(p\)都会变成\(\varphi(p)\) 所以,\(\va…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合. 显然 |Zn| =φ(n) . 有关性质:对于素数 p ,φ(p) = p -1 .对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1)  .这是因为 Zn = {1, 2, 3,…
题意:给你一个分数,求它在二进制下的循环节的长度,还有第一个循环节从哪一位开始. For example, x = 1/10 = 0.0001100110011(00110011)w and 0001100110011 is a preperiod and 00110011 is a period of 1/10. 思路一: 我们可以观察一下1/10这组数据,按照二进制转换法(乘二法),我们可以得到: 1/10 2/10 4/10 8/10 16/10 32/10 ... 然后都分子都尽可能减去…
题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出满足 (1) X^A = B(mod 2*K + 1) (2) X 在范围[0, 2K] 内的X的个数!自然数论之神是可以瞬间秒杀此题的,那么你呢? 输入 第一行有一个正整数T,表示接下来的数据的组数( T <= 1000) 之后对于每组数据,给出了3个整数A,B,K (1 <= A, B <…
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^(p-1)=1 (mod p).这和求原根有一定联系. 再顺便提一下欧拉定理:若 a,n 互质,那么 a^Φ(n)=1(mod n).    还有一个推论:若x = y(mod φ(n) 且 a与n 互质,则有 a^x=a^y(mod n). 百度百科是这么说的:"原根,归根到底就是 x^(p-1)=…
这道题目感觉好难,根本就是无从下手的感觉,尝试了以前的所有方法,都没有思路,毫无进展,参考了一下别人的思路,感觉学到了新的知识 接下来开始分析 观察1/10这组数据,按照二进制转化法可以得到: 1/10 2/104/108/1016/1032/10.…… 对于每一个分子进行模10处理 可以相应的得到:    1/102/104/108/106/102/10…… 出现了重复,这个重复就是要求的最小循环 对于p/q,首先p'=p/gcd(p,q),q'=q-gcd(p,q),然后求p'*2^i ≡…