BP算法完整推导 2.0 (下)】的更多相关文章

前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神经网络 先来简单介绍一下神经网络,引入基本的计算公式,方便后面推导使用 图1 神经网络神经元模型 图1就是一个标准的M-P神经元模型. [神经元工作流程] 每个神经元接受n个(图1中只有3个)来自其他神经元或者直接输入的输入信号(图1中分别为x0,x1,x2),这些输入信号分别与每条“神经”的权重相…
反向传播算法的推导 如图为2-layers CNN,输入单元下标为i,数量d:隐层单元下表j,数量\(n_H\):输出层下表k,单元数量c 1.目标 调整权系数\(w_{ji}\),\(w_{kj}\),使得输出\((x_i,z_i)\)尽可能等于样本\((x_i,t_i)\) 即定义误差函数\(J(w)\)最小 \[ J(w)=\sum_{x} J_x(w) \\ J_x(w)=\frac{1}{2} \sum _{k=1}^c(t_k-z_k(x))^2 \] 2.节点表示 对于隐层中的节点…
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 "\(\bigcap\)" 的函数 \(f(x)\) \(\lambda_j \ge 0\) \(\sum \limits _j \lambda_j = 1\) 类似于随机变量的分布 的前提条件下, 则有…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程. 全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的…
1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到输出.输出值的值域为,例如的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大. 1.1 前向传播的计算 为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例: 输入的样本为: ${\Large \overrightarr…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
目录 1. 需要的微积分知识 1.1 导数 1.2 求导的链式法则 2. 梯度下降法 2.1 梯度 2.2 梯度算法的解释 3.误差反向传播算法 3.1 理论推导 3.1.1 符号说明 3.1.2 推导过程 3.2 BP算法的小结 3.3 Python实现 3.3.1 最简单三层网络 3.4 附录: 1. 需要的微积分知识 1.1 导数 对于一元函数,在导数存在的情况下,在某一点的导数,也就是该点的斜率. 对于多元函数,对于某一点求导,则需要指明方向,两个特殊的方向,1. 偏导:在坐标轴方向的导…
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/article/details/79381863) 更新:为了让看博客的带哥们能直观的看,我编译截图了,放在这里,latex 源码在下面 这个只是为了应付作业总结的,所以没有认真检查过,如果内容.正确性(尤其是这个)和格式上有什么问题请务必在下面评论区中指出. \documentclass{artic…
最近一个月项目好忙,终于挤出时间把这篇 BP 算法基本思想写完了,公式的推导放到下一篇讲吧. 一.神经网络的代价函数 神经网络可以看做是复杂逻辑回归的组合,因此与其类似,我们训练神经网络也要定义代价函数,之后再使用梯度下降法来最小化代价函数,以此来训练最优的权重矩阵. 1.1 从逻辑回归出发 我们从经典的逻辑回归代价函数引出,先来复习下: \[J(\theta) = \frac{1}{m}\sum\limits_{i = 1}^{m}{[-{y^{(i)}}\log ({h_\theta}({x…
1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初…