本人买的,无私贡献给大家,无解压密码 下载地址: 链接:https://pan.baidu.com/s/1cJtnhEQSXHVMgygr8PHh9A 提取码:a54u…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安装二.Xshell远程连接Ubuntu系统三.Jupyter notebook服务器的配置及远程访问四.远程环境的测试Tensorflow软件库的安装简单爬虫数据可视化基于神经网络实现fashion_mnist图片的识别总结 前言 如今,人工智能.深度学习等高深知识逐渐融入大家的视野,小大验证码的识…
孤荷凌寒自学python第六十五天学习mongoDB的基本操作并进行简单封装4 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十一天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了向mongoDB数据库中删除记录的操作,详细学习过程见屏幕录屏学习过程. 一.首先解决了昨天没有解决的修改记录的问题 今天花了一定的时间认真看相关资料,发现在修改记录时: [方法一]: 集合对象.update({查询记录的…
孤荷凌寒自学python第六十四天学习mongoDB的基本操作并进行简单封装3 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装. 今天成功了解并实测完成了向mongoDB数据库中修改记录的操作,详细学习过程见屏幕录屏学习过程. 测试代码如下: [ceshi.py] from pymongo import MongoClient import datetime import _…
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性模型就是一个最简单的神经网络的结构,其内部参数的更新过程如下: 对于简单的模型来说可以直接使用表达式的方式来更新权重,但是如果网络结构比较复杂(如下图),直接使用解析式的方式来更新显然有些复杂且不太可能实现. 反向传播就是为了解决这种问题.反向传播的基本思想就是将网络看成一张图,在图上传播梯度,从而使用链式传…
多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili Softmax 这一讲介绍使用softmax分类器实现多分类问题. 上一节课计算的是二分类问题,也就是输出的label可以分类为0,1两类.只要计算出\(P(y=1)\)的概率,那么\(P(y=0)=1-P(y=1)\):所以只需要计算一种类型的概率即可,也就是只要一个参数. 而在使用…
处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集示例如下: 由于使用的是多维的数据,因此模型中的x和y都应该变为向量的形式,变为如下式子: 而下方针对多维数据的式子中的一部分可以使用矩阵相乘的方式表示: \[\hat y^{(i)}=\sigma([x_1^{(i)}...x_8^{(i)}]\begin{bmatrix} w_1\\ .\\ .\\ .\…
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的局限性 机器学习算法的瓶颈 为什么选择了神经网络 深度学习的基本思路 深度学习的诞生历程 深度学习得以发展的因素 典型的网络结构 深度学习的发展现状 在机器视觉中的应用 在语音识别中的应用 在自然语言处理中的应用 在推荐系统中的应用 深度强化学习简介 本集总结 机器学习面临的挑战: 经典的机器学习算…
一.深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence). 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助.它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字.图像和声音等数据. 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的…