HDU1568斐波那契推理】的更多相关文章

Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4512    Accepted Submission(s): 2068 Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] =…
题意:      就是求斐波那契数,但是只要求输出前四位,(n<=100000000). 思路:      这个要用到斐波那契的公式和一些log的规律,直接打看着很乱,直接在网上偷张图片吧:      然后就是一些log的性质 log10(a^b) = b * log10(a),log10(a*b) = log10(a) + log10(b) 我们可以根据这个把大数的前几位拿出来,这样: log10(1234567890)  = log10(1.234567890 * 10^9)  = log1…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=20的时候,不足四位,所以直接打表. 当n>20的时候,大于四位的时候,ans满足这个公式:ans=-0.5*log10(5.0)+num*1.0*log10((1+sqrt(5.0))/2.0); 这个公式是怎么来的呢?我们可以对an取10的对数,根据对数的性质. log10(ans)=log10(1/…
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 请你求出 f(n) mod 1000000007 的值. Input 第 1 行:一个整数 n Output 第 1 行: f(n) mod 1000000007 的值 Sample Input 5 Sample Output 5 Http Luogu:htt…
题意:       求斐波那契的前后4位,n <= 10^8. 思路:       至于前四位,和hdu1568的求法一样:       http://blog.csdn.net/u013761036/article/details/38726907 后四位也很好求,后四位我们可以用矩阵+快速幂去求,斐波那契的矩阵 很好推 x0 x1 *  0 1  =  x1 x2           1 1 这样就直接ok了,后四位直接在跑矩阵的时候对10000取余就行了.  #include<stdio…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例如 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........这个数列从第3项开始,每一项都等于前两项之和,而且当n趋向于无穷大时,前一项与后一项的…
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to decorate the show-window of his shop with textile stripes of white, blue and red colors. He wants to satisfy the following conditions: Stri…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…