斐波那契数列(js)】的更多相关文章

牛客网链接 下面介绍一下什么是斐波那契数列 js代码 知道了通项公式,那代码就非常简单了 function Fibonacci(n) { // write code here let pre = 1 let back = 1 let now if (n === 0) return 0 if (n ===1 || n ===2) return 1 for (let i = 3; i <= n; i++){ now = pre + back pre = back back = now } retur…
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列".  指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.-- 题目:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面.已知一对兔子每个月可以生一对小兔子,而一对…
之前算斐波那契数列都是算前两个数相加实现的 比如0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 2=1+1 3=1+2 5=2+3 8=3+5 …… 其实还有另外一个规律: 2 = 1*2-03 = 2*2-15 = 3*2-18 = 5*2-213= 8*2-321=13*2-5 …… 下面是JS实现的代码: <!DOCTYPE h…
1.1 知识点 函数:就是可以重复执行的代码块 2.  组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖,后面的覆盖前面的 函数名等于整个函数,打印函数名,就等于打印整个函数的代码 7.  加载函数的时候只加载函数名,不加载函数体 参数相当于局部变量 两个平级的函数中变量不会相互影响 10.     预解析:函数在解释文档的时候会被整体提到文档的最前面,和加载不一样 第一种:解析的时候会被提前,可在任…
js算法集合(二)  斐波那契数列 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列进行研究,来加深对循环的理解.     Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列…
一.水仙花数 1.啥是水仙花数? 水仙花数是指一个 n 位正整数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身.(例如:1^3 + 5^3+ 3^3 = 153) 2.利用JS实现对水仙花数的寻找. 这一次我们寻找水仙花数的方法,是JS中非常基础的while循环.代码如下: si不si很神奇~ 二.斐波那契数列 1.啥是斐波那契数列? 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔…
面试攒经验,let's go! 值此高考来临之际,闲不住的我又双叒叕出发去面试攒经验了,去了公司交待一番流程后,面试官甩给了我一张A4纸,上面写着一道js算法笔试题(一开始我并不知道这是在考察js算法),上面写着“1.1.2.3.5.8......,求第n个数的值” 不得不承认,当时我第一眼看这道题大脑里是懵逼的.后来才想起来,这不就是数学题里的那个斐波那契(肥婆纳妾)数列么!从第三个数开始,每个数都是前两个数的和. 能get到这个点,你已经成功了一半了.另一半就是需要你将数学公式逻辑转变成js…
斐波那契数列指的是这样一个数列:1.1.2.3.5.8.13.21.34.…… 前两项为1,从第三项起,每一项等于前两项的和,即F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*) 请用JS实现:输入斐波那契数列的项数,输出该项的值 方法1:递归 function fibonacci(n){ if(n==1||n==2){ return 1 }else{ return fibonacci(n-1)+fibonacci(n-2) } } 递归方式是大多数人的常规…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...... 这个数列从第3项开始,每一项都等于前两项之和. 1.递归算法: function fib(n) { ) { return n; }else { ) + fib(n-); } } 2.动态规划算法 function fib(n) { var val = []; ; i <= n; ++i) { val[i] = ; } || n == ) { ; }else { val[] = ;…
一.前言 昨晚下班后,经理出于兴趣给我们技术组讲了讲算法相关的东西,全程一脸懵逼的听,中途还给我们出了一道比较有趣的爬楼问题,问题如下: 假设一个人从地面开始爬楼梯,规定一步只能爬一坎或者两坎,人只能往上走,例如爬到第一坎,很明显从地面到第一坎只有一种可选方式,从地面爬到第二坎,他可以从地面直接跨到第二坎,也可以先从地面到第一坎,再从第一坎到第二坎,也就是2种可选方式,那么求他爬到N楼一共有几种可选方式. 这道题涉及到了斐波那契数列,要求使用递归来求值,技术贼菜的我也是一脸懵逼,所以本着学习的心…
缓存 cache 作用就是将一些常用的数据存储起来 提升性能 cdn //-----------------分析解决递归斐波那契数列<script> //定义一个缓存数组,存储已经计算出来的斐波那契数 //1.计算的步骤 //1.先从cache数组中去取想要获取的数字 //2.如果获取到了,直接使用 //3.如果没有获取到,就去计算,计算完之后,把计算结果存入cache,然后将结果返回 // var cache = []; // // function fib(n){ // //1.从cach…
斐波那契数列:1.1.2.3.5.8.13.21.34.…… 函数: 使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1. for循环: 从底层向上运算, a(0)+a(1)->a(1) //第0个数字+第1个数字=第2个数字a(1)+a(1)->a(2) //第1个数字+第2个数字=第3个数字a(2)+a(3)->a(5) //第2个数字+第3个数字=第4个数字······a(n-1)+a(n-2)->a(n) 因此,在循环中只要…
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title></title> </head> <body> <p>斐波那契数列:1,1,2,3,5,8,13,21,34,55,89,144........... </p> <p>求斐波那契数列第n项的值</p> </body&…
斐波那契数,指的是这样一个数列:1.1.2.3.5.8.13.21.……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加. 常用的计算斐波那契数列的方法分为两大类:递归和循环. 递归 方法一:普通递归 代码优美逻辑清晰.但是有重复计算的问题,如:当n为5的时候要计算fibonacci(4) + fibonacci(3),当n为4的要计算fi…
//斐波那契数列:后一个数等于前面两个数的和 //0,1,1,2,3,5,8,13,21.... let readline = require("readline-sync"); console.log("请输入斐波那契数列的位数:") let pos = readline.question(""); let num1 = 0;//第1位 let num2 = 1;//第2位 let temp = 0;//临时变量 for(let i=3;i&l…
定义:程序调用自身的编程技巧称为递归.一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量. 一般应用于不是清晰级别的结构名调用上. 构成递归需具备的条件: 1. 子问题须与原始问题为同样的事,且更为简单: 2. 不能无限制地调用本身,须有个出口,化简为非递归状况处理.   例1:斐波那契数列 //斐波那契数列,又称黄金分割数…
下面是五种实现斐波那契数列的方法 循环   function fibonacci(n){ var res1 = 1; var res2 = 1; var sum = res2; for(var i = 1;i < n;i ++){ sum = res1 + res2; res1 = res2; res2 = sum; } return sum; } 普通递归 function fibonacci (n) { if ( n <= 1 ) {return 1}; return fibonacci(…
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="content-type" content="text/html" /> <meta name="keywords" content="不用临时变量进行两个值的变换" /> <meta na…
/*斐波那契数列 源代码分析 f(x) = 1 ; 当 x < 2 ; f(x) = f(x-1)+f(x-2); 当 x >= 2 ; 通项式为:fn ={((1+根号5)/2)^n-((1-根号5)/2)^n}/(根号5) 则根据通项式构造函数求fn; */ //计时函数 console.time() //计时开始 console.timeEnd() //计时结束并输出时长 console.time(); var i; var total; //方法一 使用原始方法 function fi…
常规写法 https://cn.bing.com/search?q=js+fibonacci+sequence&pc=MOZI&form=MOZSBR //Fibonacci function fibonacci(n) { var array = [0, 1]; for (var i = 2; i <= n; i++) { array.push(array[i - 1] + array[i - 2]); } return array[n]; } var n = 6; var ans…
如果一对兔子每月生一对兔子:一对新生兔,从第二个月起就开始生兔子:假定每对兔子都是一雌一雄,试问一对兔子,第n个月能繁殖成多少对兔子? ——————————————————————————————————————————————————————————————————— 典型斐波那契数列,用递归实现是so easy,在JS中实现递归通常用arguments.callee 这是因为早期JS没有具名函数,无法使用函数名进行递归,于是产生了arguments.callee JS严格模式禁用了argum…
现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 java版本: public class Solution { public static void main(String[] args) { long startTime=System.currentTimeMillis(); System.out.println("第39项是:"+Fibonacci(39)); long endTime = System.currentTimeMill…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…