luogu P4168 蒲公英+ 分块学习笔记】的更多相关文章

传送门 题目描述 在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关. 为了简化起见,我们把所有的蒲公英看成一个长度为n的序列\((a_1,a_2..a_n)\),其中 \(a_i\)为一个正整数,表示第i棵蒲公英的种类编号. 而每次询问一个区间 [l,r],你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个. 注意,你的算法必须是在线的 Solution 分块 但是要维护些什么呢? 假设我们已经对原序列进行了分块,对于一个询问\([…
我没想到居然就学到分块了...哇我还一直觉得分块听起来挺牛逼的一直想学的来着qwq(其实之前好像vjudge上有道题是用分块做的?等下放链接qwq 所以想着就写个学习笔记趴qwq 首先知道分块的时间复杂度 O(n√n) 发现分块其实就是个有优化的暴力? 肥肠暴力,,, 简单说下,就是分成√n块,然后大段的随便维护一下局部的随便朴素暴力掉就成了,, 哪里牛逼,,,浪费我感情QAQ 详细港下趴还是qwq 举个栗子好讲些qwq 假如给了一个包含n个数的序列a,请支持区间修改操作和区间查询操作 显然可以…
题目链接:传送门 题目链接:https://www.luogu.org/problemnew/show/P4168 题解: 经典的在线求区间众数的问题,由于区间众数不满足区间可加性,所以考虑分块,假设分块长度为 $S$,则总共分成 $T=N/S$ 块, 对于每个询问 $[l,r]$,设点 $l$ 在第 $p$ 块,点 $r$ 在第 $q$ 块,假设第 $p+1$ 到第 $q-1$ 块这整一个区间为 $[L,R]$, 那么,查询的区间就被分为 $[l,L)$ 和 $[L,R]$ 和 $(R,r]$…
题面. 许久以前我还不怎么去机房的时候,一位大佬好像一直在做这道题,他称这道题目为"大分块". 其实这道题目的思想不只可以用于处理区间众数,还可以处理很多区间数值相关问题. 让我们在线处理区间众数. 数据范围1e5,考虑分块. 先对蒲公英种类离散化. 预处理 预处理出两个数组. 一个数组sum[ i ][ j ]表示第j种颜色到第i个分块的前缀和. 另一个数组 zhongshu[ i ][ j ]表示第i个分块到第j个分块这个区间内的众数. 维护这两个操作时间复杂度都不能超过n3/2.…
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq 10^9$.(一口老血喷到屏幕上) $O(n)$ 行不通了,考虑别的做法. 我们来看一下 $\lfloor\frac{x}{i}\rfloor$ 的值. $x=9$:(不包括0,只有4种取值?) i 1 2 3 4 5 6 7 8 9 10 x/i 9 4 3 2 1 1 1 1 1 0 $x=1…
整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右边界为$\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor$ 这样时间复杂度就是$O(\sqrt{n})$ 如果是类似$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i \ opt \ f(\lfloor{m/i} \r…
似乎之前讲评vjudge上的这题的时候提到过?但是并没有落实(...我发现我还有好多好多没落实?vjudge上的题目还没搞,然后之前考试的题目也都还没总结?天哪我哭了QAQ 然后这三道题我都是通过一道板子题来讲解的,分别是普通,带修,树上 普通莫队 首先总结一下,最简单的莫队,就是有很多询问,并且知道[l,r]的答案可以推出[l-1,r][l,r+1]这一类的,我们就可以通过不再重复计算同一个区间而节约效率 莫队好像最正统的是要用曼哈顿距离最小生成树的?但是太复杂辣所以一般都是直接用分块的 然后…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
osgEarth学习笔记1.        通过earth文件创建图层时,可以指定多个影像数据源和多个高程数据源,数据源的顺序决定渲染顺序,在earth文件中处于最前的在渲染时处于最底层渲染:所以如果有高低精度不同的影响数据或者高程数据,在创建earth文件时要将粗精度的数据放在上方xml节点,高精度的放在其下面的节点:2.        osgEarth自带多种驱动器,不同的驱动器驱动不同的数据源,自己也可以扩展驱动器读取相应的数据:3.        可以通过profile属性指定数据的投影…