高级搜索树-AVL树】的更多相关文章

目录 平衡因子 AVL树节点和AVL树的定义 失衡调整 插入和删除操作 完整源码 AVL树是平衡二叉搜索树中的一种,在渐进意义下,AVL树可以将高度始终控制在O(log n) 以内,以保证每次查找.插入和删除操作均可以在O(log n)的时间内完成. 平衡因子 定义任一结点v的平衡因子(balance factor)为其左右子树的高度差 balfac(v) = height(v->lc) - height(v->rc) AVL树即平衡因子受限的二叉搜索树-----各结点平衡因子的绝对值不超过1…
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
目录 局部性 双层伸展 查找操作 插入操作 删除操作 性能分析 完整源码 与AVL树一样,伸展树(Splay Tree)也是平衡二叉搜索树的一致,伸展树无需时刻都严格保持整棵树的平衡,也不需要对基本的二叉树结点做任何附加改动,能够保持分摊意义下的高效率. 局部性 通常在任意数据结构的生命期内,执行不同操作的概率往往极不均衡,且各操作之间具有极强的关联性,比如数据局部性,所谓数据局部性包括: 刚刚被访问到的元素,很可能不久之后就再次被访问 将被访问的下一元素,很可能就处于不久之前被访问够的某个元素…
前言 今天要介绍几种高级数据结构AVL树,介绍之前AVL,会先说明平衡二叉树,并将树的学习路线进行总结,并介绍维持平衡的方法:右旋转.左旋转. 一.树学习路线 1.路线总结 总结了一下树的学习路线,如下图: 2.说明 上面这个图要从上往下进行一步一步学习:首先,从二叉树开始学习,要对树的一些概念有一些基本了解,如树的左孩子和右孩子等,然后对树的遍历方法:先序.中序和后序遍历都熟练掌握,有精力再把层序遍历掌握: 接下来,大部分的树,都是在二叉树的基础上加了许多特性而形成的,所以二叉树是基础,如二叉…
@ 目录 一.背景 二.平衡二分搜索树---AVL树 2.1 AVL树的基本概念 结点 高度 平衡因子 2.2 AVL树的验证 三.旋转操作 3.1 L L--需要通过右旋操作 3.2 R R--需要通过左旋操作 3.3 L R--需要先通过左旋再右旋操作 2.4 R L--需要先通过右旋再左旋操作 四.AVL树完整代码实现 一.背景 二叉树是一种常用的数据结构,更是实现众多算法的一把利器.(可参考<自己动手作图深入理解二叉树.满二叉树及完全二叉树>) 二分搜索树(Binary Search…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
AVL树 AVL树又称为高度平衡的二叉搜索树,是1962年有俄罗斯的数学家G.M.Adel'son-Vel'skii和E.M.Landis提出来的.它能保持二叉树的高度 平衡,尽量降低二叉树的高度,减少树的平均搜索长度AVL树的性质 1. 左子树和右子树的高度之差的绝对值不超过1 2. 树中的每个左子树和右子树都是AVL树 3. 每个节点都有一个平衡因子(balance factor--bf),任一节点的平衡因子是-1,0,1.(每个节点的平衡因子等于右子树的高度减去左子 树的高度 ) AVL树…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡二叉搜索树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.对于N个节点的AVL树,由于树高被限制为lgN,因此其插入查找删除操作耗时为O(lgN). 2.旋转 在讲解关键步骤插入与删除以前,首先我们先定义一些辅助用的操作:旋转.旋转分为左旋和右旋,其示意图如下:   相…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查找树 是一棵空树,或是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉排序树. 插入数据: 1 如果根节点为空,则将插入的节点作为根节点 2 否则和根节点比较(我们是通过k…
数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有层次关系的集合.把它叫做"树"是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的.它具有以下的特点: 每个节点有零个或多个子节点: 没有父节点的节点称为根节点: 每一个非根节点有且只有一个父节点: 除了根节点外,每个子节点可以分为多个不相交的子树: 节点的度:一个节点含有的子树的…
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个节点跟踪"平衡因子balance factor"参数 \(balance Factor=height (left SubTree)-height(right SubTree)\) 平衡因子大于0,称为"左重left-heavy", 小于零称为"右重right-…
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
目录 红黑树的定义 节点与树的定义 旋转操作 插入操作 情况1:p的兄弟u为黑色 情况2: p的兄弟u为红色 插入操作性能分析 代码实现 删除操作 情况1:x的接替者succ为红色 情况2:x的接替者succ为黑色 情况2.1:x的父亲p为黑色,x的兄弟s为黑色,但是s有红色孩子 情况2.2:x的父亲p为黑色,x的兄弟s为黑色,且s没有红色孩子 情况2.3:x的父亲p为黑色,x的兄弟s为红色 情况2.4:x的父亲p为红色,此时x的兄弟s必定为黑色 删除操作性能分析 代码实现 完整代码及测试实例…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 数据结构图文解析之:树的简介及二叉排序树C++模板实现. 数据结构图文解析之:AVL树详解及C++模板实现 数据结构图文解析之:二叉堆详解及C++模板实现 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现 AVL树简介 AVL树的名字来源于它的发明作者G.M. Adelson-Velsk…
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), 二叉查找树就会退化成近似链或链.如下图(b). 此时, 其操作的时间复杂度退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这同时也…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n.比如下面两个二叉树: 深度为n的二叉树 深度为log(n)的二叉树 这两个二叉树同时也是二叉搜索树(参考树, 二叉树, 二叉搜索树).注意,log以2为基底.log(n)是指深度的量级.根据我们对深度的定义,精确的最小深度为floor(log(n)…
1 .基本概念 AVL树的复杂程度真是比二叉搜索树高了整整一个数量级——它的原理并不难弄懂,但要把它用代码实现出来还真的有点费脑筋.下面我们来看看: 1.1  AVL树是什么? AVL树本质上还是一棵二叉搜索树(因此读者可以看到我后面的代码是继承自二叉搜索树的),它的特点是: 1. 本身首先是一棵二叉搜索树. 2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1. 例如: 5              5 / \            / \ 2   6         …
AVL树的定义 一种自平衡二叉查找树,中面向内存的数据结构. 二叉搜索树T为AVL树的满足条件为: T是空树 T若不是空树,则TL.TR都是AVL树,且|HL-HR| <= 1 (节点的左子树高度与节点的右子树高度差的绝对值小于等于1) 说明 AVL树的实现类为AVLTree继承自前篇中的二叉搜索树BTreeSort ,AVL树的节点类为AVLNode继承自二叉树节点类BTreeNode. 实现代码 AVL树节点定义 1  ); 203          System.out.print("…
=================================================================== AVL树的概念       在说AVL树的概念之前,我们需要清楚二茬搜索树的概念.对于二叉搜索树,我们知道它可以降低查找速率,但是如果一个二叉搜索树退化成一棵只剩单支的搜索树,此时的查找速率就相当于顺序表中查找元素,效率变低,时间复杂度由原来的O(logN)变为O(N).         此时就有了AVL(高度平衡二叉搜索树),从它的名字就能知道它也是一棵二叉搜…
AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树的作用: 我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为…
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树,又叫二叉搜索树,是一种有顺序有规律的树结构.它可以有以下几个特征来定义它: (1)首先它是一个二叉树,具备二叉树的所有特性,他可以有左右子节点(左右孩子),可以进行插入,删除,遍历等操作: (2)如果根节点有左子树,则左子树上的所有节点的值均小于根节点上的值,如果根节点有右子树,则有字数上的所有节…
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1.1 AVL 的旋转 一棵AVL树是其每个节点的左子树和右子树的高度差最多为1的二叉查找树(空树高度定义为-1).AVL树插入和删除时都可能破坏AVL的特性,可以通过对树进行修正来保证特性,修正方法称为旋转. 下面以4个插入操作为例,说明不同旋转对应的场景. 1.1.1 LL-R 插入结点为6,沿着…
AVL树是有平衡条件的二叉搜索树.这个平衡条件必须容易保持,而且需要保证树的深度是O(logN). AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树.回顾此前的几节,我们首先介绍的是二叉查找树BST.然而我们也能感受到,尽管从同时兼顾高效的静态操作 和动态操作的角度讲,BST相对此前简单的向量和链表已经具有某种优势和潜质,但是毕竟它并不能保证这一点.其原因在于 它的高度,无论是从平均情况 还是最坏情况都不能保证做到足够的低,具体来说也就是做到logN…
AVL树基本介绍 AVL树是一种自平衡的二叉查找树,在AVL树中任何节点的两个子树的高度差不能超过1.就是相当于在二叉搜索树的基础上,在插入和删除时进行了平衡处理. 不平衡的四种情况 LL:结构介绍 看如下图,假设最初只有k1, k2, k3, y, z 五个结点,这时该树两边的高度分别为3 和 2,相差为1,满足AVL平衡的概念. 随后插入了结点 x ,导致了不平衡.k1.left.left 有了子树,导致了不平衡.所以是LL结构. (这个 x 结点是k3的左孩子还是右孩子无所谓,因为无论在左…
本文将主要讲解平衡二叉树中的 AVL 树,其中将重点讲解二叉树的重平衡方法,即左旋和右旋,以及 3+4 重构:这些方法都是后面要讲的 B 树,红黑树等 BBST 的重要基础:此外在看本文之前最好先看一下 二叉搜索树 : 一.结构概述 前一篇博客里面讲了,二叉树同时具有向量的静态查找和列表的动态插入.删除等优点:当然这是在理想的状态下,但是当出现一些极端情况的时候,比如二叉树的右子树或者左子树全部为空,此时二叉树将退化为一个列表:所以为了避免这种情况就要使二叉树的左右子树尽量平衡,当然最好的情况是…