用于模型选择的AIC与BIC】的更多相关文章

一.AIC(Akaike information Criterion)准则 二.BIC(Bayesian information Criterion)准则 参考文献: [1]AIC与BIC区别…
一.模型选择之AIC和BIC 人们提出许多信息准则,通过加入模型复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法 赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information Criterion,BIC) AIC是衡量统计模型拟合优良性的一种标准,由日本统计学家赤池弘次在1974年提出 它建立在熵的概念上,提供了权衡估计模型复杂度和拟合数据优良性的标准,通常情况下,AIC定义为: \( AIC =…
 内容概要¶ 训练集/測试集切割用于模型验证的缺点 K折交叉验证是怎样克服之前的不足 交叉验证怎样用于选择调节參数.选择模型.选择特征 改善交叉验证 1. 模型验证回想¶ 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就须要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 最先我们用训练精确度(用所有数据进行训练和測试)来衡量模型的表现,这样的方法会导致模型过拟合:为了解决这一问题,我们将所有数据分成训练集和測试集两部…
很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的,同时带来一个机器学习中非常普遍的问题——过拟合.所以,模型选择问题在模型复杂度与模型对数据集描述能力(即似然函数)之间寻求最佳平衡. 人们提出许多信息准则,通过加入模型复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法——赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information C…
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合…
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂些计算机,大家以后有问题可以讨论. 今天我们来讲一下PRML第一章,这一章的内容是基于一些简单的例子对于机器学习中的基本概念给与介绍.这是为后续章节的介绍给一个铺垫.我今天讲的内容包括以下几个部分: 把书上的知识点做了个总结大概.首先我们来看一下,我个人理解的机器学习的定义:机器学习的分类有很多种,…
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www…
首先看几个问题 1.实现参数的稀疏有什么好处? 一个好处是可以简化模型.避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合.并且参数少了模型的解释能力会变强. 2.参数值越小代表模型越简单吗? 是.越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反应了在这个区间的导数很大,而只有较大的参数值才能产生较大的导数.因此复杂的模型,其参数值会比较大. 一.AIC 1.简介 AIC…
机器学习算法 原理.实现与实践——模型评估与模型选择 1. 训练误差与测试误差 机器学习的目的是使学习到的模型不仅对已知数据而且对未知数据都能有很好的预测能力. 假设学习到的模型是$Y = \hat{f}(X)$,训练误差是模型$Y = \hat{f}(X)$关于训练数据集的平均损失: $$R_{emp}(\hat{f}) = \frac{1}{N}\sum_{i=1}^NL(y_i,\hat{f}(x_i))$$ 其中$N$是训练样本容量. 测试误差是模型$Y = \hat{f}(X)$关于测…
一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.cross_val_predict(estimator,X) 计算并绘制模型的学习率曲线:model_selection.learning_curve(estimator,X,y) 计算并绘制模型的验证曲线:model_selection.validation(estimator,...) 通过排序评…