[算法] 数据结构之AVL树】的更多相关文章

1 .基本概念 AVL树的复杂程度真是比二叉搜索树高了整整一个数量级——它的原理并不难弄懂,但要把它用代码实现出来还真的有点费脑筋.下面我们来看看: 1.1  AVL树是什么? AVL树本质上还是一棵二叉搜索树(因此读者可以看到我后面的代码是继承自二叉搜索树的),它的特点是: 1. 本身首先是一棵二叉搜索树. 2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1. 例如: 5              5 / \            / \ 2   6         …
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希表实现HashMap核心源码彻底分析 数据结构与算法(五):LinkedHashMap核心源码彻底分析 数据结构与算法(六):树与二叉树 数据结构与算法(七):赫夫曼树 数据结构与算法(八):二叉排序树 本文目录 一.二叉排序树性能问题 在上一篇中我们提到过二叉排序树构造可能出现的性能问题,比如我们…
目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的树如上图所示,那么它存在的问题有以下几点: 左子树全部为空,从形式上看,更像一个单链表 插入速度没有影响 但查询速度明显降低 因为需要依次比较,不能利用二叉排序树的折半优势.而且每次都还要比较左子树,可能比单链表查询速度还慢. 那么解决这个劣势的方案就是:平衡二叉树(AVL). 基本介绍 平衡二叉树…
转载: http://blog.csdn.net/programmingring/article/details/37969745 https://zh.wikipedia.org/wiki/AVL%E6%A0%91 理解avl树,首先需要理解二叉搜索树: http://www.cnblogs.com/skywang12345/p/3576328.html 写在前面的话: linux 内核中数据结构的存储已经不在用avl树,我在对应的代码中也没有找到实现,应该是内核中全部用rbtree替换了.z…
AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左).下面给出它们的示意图: 1) LL:LeftLeft,也称为"左左".插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去…
AVL树(带有平衡条件的二叉查找树) 定义:一棵AVL树是其每个节点的左子树和右子树的高度最多差1的二叉查找树. 为什么要使用AVL树(即为什么要给二叉查找树增加平衡条件),已经在我之前的博文中说到过:http://www.cnblogs.com/sage-blog/p/3864640.html AVL树的高度:最大为 1.44log(N+2)-1.328,实际上的高度只比 logN 稍微多一点. 当进行插入操作时,我们需要更新通向根节点的路径上那些节点的所有平衡信息,而插入操作隐含的困难是插入…
AVL树是高度平衡的二叉树,任何节点的两个子树的高度差别<=1 实现AVL树 定义一个AVL树,AVLTree,定义AVLTree的节点内部类AVLNode,节点包含以下特性: 1.key——关键字,对AVL树的节点进行排序 2.left——左子树 3.right——右子树 4.height——高度 如果在AVL树插入节点后可能导致AVL树失去平衡,具体会有四种状态: LL:左左,LeftLeft LR:左右,LeftRight RL:右左,RightLeft RR:右右,RightRight…
介绍 B树的目的为了硬盘快速读取数据(降低IO操作次树)而设计的一种平衡的多路查找树.目前大多数据库及文件索引,都是使用B树或变形来存储实现. 目录 为什么B树效率高 B树存储 B树缺点 为什么B树效率高 在大规模数据存储操作中,由于无法一次性加载到内存里.所以避免不了发生内外存交换.所以次数越少,效率表现也越高. 来看下面这张图: 这是个典型的b树结构,初始因子为1000,高度仅为3的b树,就可以存储1002001000的数据了. 假设要查询最后一个数据: 从硬盘加载根节点搜索,IO一次. 根…
平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,当中每个节点的左子树和右子树的高度差至多等于1. 平衡二叉树的前提是二叉排序树,不是二叉排序树的都不是平衡二叉树. 平衡因子BF(Balance Factor):二叉树上节点的左子树深度减去右子树深度的值. 最小不平衡子树:距离插入节点近期的.且平衡因子的绝对值大于1的节点为根的子树. 下图中,新插入节点37时.距离它近期的平衡…
前言 splay学了已经很久了,只不过一直没有总结,鸽了好久来写一篇总结. 先介绍 splay:亦称伸展树,为二叉搜索树的一种,部分操作能在 \(O( \log n)\) 内完成,如插入.查找.删除.查询序列第 \(k\) 大.查询前缀(比查询的数小的数中最大的数).查询后缀(比查询的数大的数中最小的数)等操作,甚至能够实现区间平移.它由 Daniel Sleator 和 Robert Endre Tarjan 在1985年发明的.注:时间复杂度是均摊为 \(O(\log n)\) ,是经过严谨…