首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「OurOJ 46544」漏斗计算
】的更多相关文章
Solution -「OurOJ 46544」漏斗计算
\(\mathcal{Description}\) Link. 定义一个运算结点 \(u\) 有两个属性:当前容量 \(x_u\).最大容量 \(V_u\).提供以下单元操作: I 读入一个整数 \(x\),令新结点 \(u=(x,x)\). F u 装满 \(u\) 结点,即令 \(x_u=V_u\). E u 清空 \(u\) 结点,即令 \(x_u=0\). C s 令新结点 \(u=(0,s)\). M u 令新结点 \(v=(0,x_u)\). T u v 不断令 \(x_u\…
Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率随机.求 \(\{b_n\}\) 中 LIS(最长上升子序列)的期望长度.对 \(10^9+7\) 取模. \(n\le6\),\(a_i\le10^9\). \(\mathcal{Solution}\) 欺负这个 \(n\) 小得可爱,直接 \(\mathcal O(n!)\) 枚举 \(…
Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次. 此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…
Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图.答案模 \((10^9+7)\). \(n\le15\). \(\mathcal{Solution}\) 仙气十足的状压容斥. 令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V…
Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击. 的摆放方案数,对 \(998244353\) 取模. \(n\le2\times10^5\). \(\mathcal{Solution}\) 这道<蓝题>嗷,看来兔是个傻子. 从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案不会重复使用.因为重复使用只会空加代价,而不会在特定时刻产生额外贡献.故而总决策方案应有 \(2^m\) 个,我们需要在这 \(2^m\) 个中找出最小可能花费. DFS 是最显然的算法,但显然不可做,不过它枚举状态的思路很好地把我们引向了 DP. 于是开始尝试设计 DP 状态. DP 状态定义中,…
Solution -「WC 2022」秃子酋长
\(\mathscr{Description}\) Link. (It's empty temporarily.) 给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r]\),求升序枚举 \(a_{l..r}\) 时下标的移动距离. \(n,q\le5\times10^5\). \(\mathscr{Solution}\) 我写了个不加莫队,它慢死了. 我写了个 Ynoi 风格的纯纯分块预处理,它慢死了. 我写了个 polylog 的正解,它还是慢…
Solution -「CEOI 2017」「洛谷 P4654」Mousetrap
\(\mathscr{Description}\) Link. 在一个含 \(n\) 个结点的树形迷宫中,迷宫管理者菈米莉丝和一只老鼠博弈.老鼠初始时在结点 \(y\),有且仅有结点 \(x\) 布置有陷阱.一条边有切断,脏和干净三种状态,初始时所有边是干净的,每一回合中: 管理者先行动:选择一条脏或干净的边,将其切断:选择一条脏的边,将其清理干净:或者不进行任何操作,此时管理者所用的操作次数不变. 老鼠后行动:设当前老鼠在结点 \(u\),则选择一条干净的边 \((u,v)\),走到…
Solution -「CEOI 2006」「洛谷 P5974」ANTENNA
\(\mathcal{Description}\) Link. 给定平面上 \(n\) 个点,求最小的能覆盖其中至少 \(m\) 个点的圆半径及一个可能的圆心. \(n\le500\),坐标值 \(X\in[0,10^4]\). \(\mathcal{Solution}\) 不难想到二分答案 \(r\),以每个点为圆心,\(r\) 为半径作圆,若 \(r\) 合法则能找到一个被至少 \(m\) 个圆覆盖的点. 但是圆的交极难处理,结合数据范围,考虑通过一些枚举操作来简化问题-…
Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\).求变换完成后 \(x=i~(i=0..n)\) 的概率.答案模 \(998244353\). \(\mathcal{Solution}\) 令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然…