3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][Discuss] Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 Source 2014湖北省队互测…
正题 题目链接:https://www.luogu.com.cn/problem/P4859 题目大意 两个长度为\(n\)的序列\(a,b\)两两匹配,求\(a_i>b_i\)的组数比\(a_i<b_i\)的组数多\(k\)的方案数. 保证输入数字两两不同 解题思路 其实就是求恰好有\(\frac{n+k}{2}\)种\(a_i>b_i\)的匹配方案. 先设\(f_{i,j}\)表示到\(a\)的第\(i\)个,已经选择了\(j\)组的方案.转移起来比较麻烦,我们不知道\(b\)中选了…
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 题解:好吧这题不是神题,而是套路题,容斥+DP的套路在很多题中都用到过,不过我虽然知道套路,却被这题的第一步卡住了. 我们将两个序列从小到大排序. 好吧这步看起来可能很水,正常人看到无序的序列都会先想到排序,…
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求方案数 PS:洛谷月赛拿到了一个Modoka的挂件O(∩_∩)O哈哈~ 总的方案数就是\(n!\),相当于一个做全排列 恰好多k个,那么就是a>b的有\(k=k+\frac{n-k}{2}\)个 恰好\(\rightarrow\)容斥 \[ =\ \ge k个的配对方案数\ -\ \ge k+1个\ +…
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \(a_i>b_i\) 的对数 比 \(b_i > a_i\) 的恰好多 \(k\) 对. \((1 \le k \le n \le 2000)\) 题解 首先这个对数多的有点恶心 , 我们直接转化成 \(a_i > b_i\) 的共有 \(\frac{n+k}{2}\) 对 (自行模拟一下.…
世萌萌王都拿到了,已经没有什么好害怕的了——    (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗?  (作大死) 这题的数据就告诉我们这是赤裸裸的 dp ,不过要加个容斥而已 注意到我们可以算出一共需要 s 组满足糖果数 > 药片数 (在这里显然有个特判,即 n-k 为奇数时,答案一定为 0 ) 我们将两个读入的数组排序 令 next[i] 表示最大的 j 满足 糖果[i]>药片[j] 令 f[i][j] 表示…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K对); 2).把两个数组A,B从小到大排序.然后求出 nxt[i]表示 A[i]>B[nxt[i]] 且 nxt[i]为能取到的最大值换句话说,nxt[i]表示有多少个 B的元素小于A[i]3).定义 dp[i][k]表示前 i个A中有 k个选择了比它小的 B元素,其它的暂时不选 的方案数.转移显然 d…
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\),定义一种选择方案的权值为\(Ai+Bj+Ck,i<j<k\),求所有选择方案的权值之和 题解 容斥,至少\(0\)条边相连的方案\(-\)至少\(1\)条边相连的方案\(+\)至少\(2\)条边相连的方案\(-\)至少\(3\)条边相连的方案 至少\(3\)条边相连的方案最难数,是个三元环计数,和…
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首先显然“a比b大”的个数是确定的,问题转化成求“a比b大”的数对个数为m的方案数. 不好算考虑容斥,总结下容斥的一些套路.(From ATP's Blog) 1.全部-至少一个+至少两个-…=一个也没有的 2.所有的-一个也没有的=至少有一个的 3.至少有k个的-C(k+1,k)* 至少有k+1个的…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表示恰好 i 对 a[ ]>b[ ] 的关系的方案数. 那么 \(f[i]=\sum\limits_{j>=i}C_{j}^{i}*g[j] \) ,\(g[i]=\sum\limits_{j>=i}C_{j}^{i}f[j](-1)^{j-i} \) 考虑怎么求 f[ ] .可以 DP .…