深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和分类.它的基本思想是:前向将上一个时刻的输出和本时刻的输入同时作为网络输入,得到本时刻的输出,然后不断地重复这个过程.后向通过BPTT(Back Propagation Through Time)算法来训练得到网络的权重.RNN比CNN更加彻底的是,CNN通过卷积运算共享权重从而减少计算量,而RNN…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加载数据 使用text8作为训练的文本数据集 text8中只包含27种字符:小写的从a到z,以及空格符.如果把它打出来,读起来就像是去掉了所有标点的wikipedia. 直接调用lesson1中maybe_download下载text8.zip 用zipfile读取zip内容为字符串,并拆分成单词li…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce…
博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经网络(RNN)的变种是长短期模型网络(LSTM). 它使用广泛,因为它的架构克服了困扰着所有周期性的神经网络梯度消失和梯度爆炸的问题,允许创建非常大的.非常深的网络. 与其他周期性的神经网络一样,LSTM网络保持状态,在keras框架中实现这一点的细节可能会令人困惑. 在这篇文章中,您将会确切地了解…
传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常重要,例如自然语言处理.语音识别.手写体识别等应用. 循环神经网络RNN包含循环的网络,可以记录信息的持久化信息,特别适合应用在跟时间序列相关的场合. RNN之父Jürgen Schmidhuber Jürgen Schmidhuber 是瑞士人工智能实验室 IDSIA 的科学事务主管,同时任教于卢…
一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中,许多系统的输出不仅依赖于当前输入,还与过去一段时间内系统的输出有关,即需要网络保留一定的记忆功能,这就给前馈神经网络提出了巨大的挑战.除此之外,前馈神经网络难以处理时序数据,比如视频.语音等,因为时序数据的序列长度一般是不固定的,而前馈神经网络要求输入.输出的维度都是固定的,不能任意改变.出于这两…
原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解.   循环神经网…
一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  https://blog.csdn.net/behboyhiex/article/details/80819530 LSTM该不该使用RELU? https://blog.csdn.net/xygl2009/article/details/78855795 从RNN的结构特征可以容易看出它最擅长解决与时间…