AI算法测试之浅谈】的更多相关文章

Simulate Anneal模拟退火算法,是一种用于得到最优解的随机化算法. 如果可以打一手漂亮的随机化搜索,也许当你面对一筹莫展的神仙题时就有一把趁手的兵器了. 这篇题解将教你什么?SA的基本思路,什么时候能用SA. 标题是浅谈,所以本篇博客参杂了些许个人简介,若有疑问或异议,欢迎提出指正. 我也很感谢你们给出的建议,它们真的能让我变好.变强. 那么我们进入本篇正题. 1. 什么是模拟退火: 模拟退火是一种在广大的搜索空间寻找最优解的随机化算法.我们看名字就明白,这个算法实在模拟物理中退火的…
AI时代的到来,给企业的底层IT资源的丰富与敏捷提出了更大的挑战,利用阿里云稳定.弹性的GPU云服务器,领先的GPU容器化共享和隔离技术,以及K8S集群管理平台,好未来通过云原生架构实现了对资源的灵活调度,为其AI中台奠定了敏捷而坚实的技术底座. 在2020年云栖大会上,好未来AI中台负责人刘东东,分享了他对AI云原生的理解与好未来的AI中台实践,本文为演讲内容整理. 大家好,我是好未来AI中台技术负责人刘东东.今天我给大家带来的演讲主题是<好未来AI云原生的浅谈>.我的分享主要分成四个部分:…
什么是Manacher算法? 转载自百度百科 Manachar算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍长度的新串,在每两个字符之间加入一个特定的特殊字符,因此原本长度为偶数的回文串就成了以中间特殊字符为中心的奇数长度的回文串了. Manacher算法提供了一种巧妙的办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一…
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做个总结,种种事情一直拖到现在,今天抽空赶紧将最后一篇补上.前面几篇博文中我们已经阐述了不论分词.词性标注亦或NER,都可以抽象成一种序列标注模型,seq2seq,就是将一个序列映射到另一个序列,这在NLP领域是非常常见的,因为NLP中语序.上下文是非常重要的,那么判断当前字或词是什么,我们必须回头看…
一.为什么要用URLEncoder 客户端在进行网页请求的时候,网址中可能会包含非ASCII码形式的内容,比如中文. 而直接把中文放到网址中请求是不允许的,所以需要用URLEncoder编码地址, 将网址中的非ASCII码内容转换成可以传输的字符 不会被编码的内容 1.大写字母A-Z 2.小写字母a-z 3.数字 0-9 4.标点符 - _ . ! ~ * ' (和 ,) 二.编码原理 1.将需要转换的内容(ASCII码形式之外的内容),用十六进制表示法转换出来,并在之前加上%开头 eg:  0…
一.什么是Hex 将每一个字节表示的十六进制表示的内容,用字符串来显示. 二.作用 将不可见的,复杂的字节数组数据,转换为可显示的字符串数据 类似于Base64编码算法 区别:Base64将三个字节转换为四个字符,Hex将三个字节转换为六个字节 三.应用场景 在XML,JSON等文本中包含不可见数据(二进制数据)时使用 四.使用 1.将字节数组转换为字符串 /** * 将字节数组转换为字符串 * 一个字节会形成两个字符,最终长度是原始数据的2倍 * @param data * @return *…
一.什么是编码解码 编码:利用特定的算法,对原始内容进行处理,生成运算后的内容,形成另一种数据的表现形式,可以根据算法,再还原回来,这种操作称之为编码. 解码:利用编码使用的算法的逆运算,对经过编码的数据进行处理,还原出原始数据,这种操作称之为解码. 二.什么是Base64编码算法 可以将任意的字节数组数据,通过算法,生成只有(大小写英文.数字.+./)(一共64个字符)内容表示的字符串数据. 即将任意的内容转换为可见的字符串形式. 三.Base64算法的由来 以前发送邮件只支持可见字符的传送.…
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B…
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 前言 通过前面几篇系列文章,我们从分词中最基本的问题开始,并分别利用了1-gram和HMM的方法实现了分词demo.本篇博文在此基础上,重点介绍利用CRF来实现分词的方法,这也是一种基于字的分词方法,在将句子转换为序列标注问题之后,不使用HMM的生成模型方式,而是使用条件概率模型进行建模,即判别模型…
目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了这种方法有的缺陷,就是OOV的问题,即对于未登录词会失效在,并简单介绍了如何基于字进行分词,本文着重阐述下如何利用HMM实现基于字的分…