算法背景 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低. 此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足…
c#中@标志的作用   参考微软官方文档-特殊字符@,地址 https://docs.microsoft.com/zh-cn/dotnet/csharp/language-reference/tokens/verbatim 1.在变量名前加@,可以告诉编译器,@后的就是变量名.主要用于变量名和C#关键字重复时使用. string[] @for = { "John", "James", "Joan", "Jamie" }; fo…
原文: http://www.d1net.com/bigdata/news/284983.html 1.1:增加次数据文件 从SQL SERVER 2005开始,数据库不默认生成NDF数据文件,一般情况下有一个主数据文件(MDF)就够了,但是有些大型的数据库,由于信息很多,而且查询频繁,所以为了提高查询速度,可以把一些表或者一些表中的部分记录分开存储在不同的数据文件里 由于CPU和内存的速度远大于硬盘的读写速度,所以可以把不同的数据文件放在不同的物理硬盘里,这样执行查询的时候,就可以让多个硬盘同…
mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1.   直接用limit start, count分页语句, 也是我程序中用的方法: select * from product limit start, count当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下: select * from product limit 10, 20   0.016秒select * from p…
大数据量,比如10万以上的数据,数据库在5G以上,单表5G以上等.大数据分页时需要考虑的问题更多. 比如信息表,单表数据100W以上. 分页如果在1秒以上,在页面上的体验将是很糟糕的. 优化思路: 1.主键索引,如ID自增列,主键 2.借助sqlserver的ROW_NUMBER()实现分页,分页时只需得到ID即可,如: WITH NoPagedTable AS ( SELECT ROW_NUMBER() OVER (order by ctime desc) AS rowIndex, ID FR…
网上教程: 先删除旧的主键 再新建主键 :数据量少时没问题,不会出现主键自增空缺间隔的情况(如:1,2,3,5):但是大数据量时会出现如上所述问题(可能是内部mysql多进程或多线程同时操作引起问题). 解决办法: 表结构如下: 执行mysql 脚本如下: # 创建表备份 create table user_account_copy like user_account; # 插入数据 INSERT INTO user_account_copy (mobile,passwd,role,create…
在互联网公司中,MySQL是使用最多的数据库,那么在并发量大.数据量大的互联网业务中,如果高效的使用MySQL才能保证服务的稳定呢?根据本人多年运维管理经验的总结,梳理了一些核心的开发规范,希望能给大家带来一些帮助.   一.基础规范 数据库字符集默认使用utf8mb4,兼容utf8,并支持存储emoji表情等四字节内容 禁止在线上生产环境做数据库压力测试 禁止从测试.开发环境.本机直连线上生产数据库 禁止在数据库中存储明文密码 禁止在数据库中存储图片.文件等大数据 禁止将业务日志实时保存到数据…
 在SQL Server中,默认MDF文件初始大小为5MB,自增为1MB,不限增长,LDF初始为1MB,增长为10%,限制文件增长到一定的数目:一般设计中,使用SQL自带的设计即可,但是大型数据库设计中,最好亲自去设计其增长和初始大小,如果初始值太小,那么很快数据库就会写满,如果写满,在进行插入会是什么情况呢?当数据文件写满,进行某些操作时,SQL Server会让操作等待,直到文件自动增长结束了,原先的那个操作才能继续进行.如果自增长用了很长时间,原先的操作会等不及就超时取消了(一般默认的阈值…
不管是日常业务数据处理中,还是数据库的导入导出,都可能遇到需要处理大量数据的插入.插入的方式和数据库引擎都会对插入速度造成影响,这篇文章旨在从理论和实践上对各种方法进行分析和比较,方便以后应用中插入方法的选择. 插入分析 MySQL中插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例: 连接:(3) 发送查询给服务器:(2) 分析查询:(2) 插入记录:(1x记录大小) 插入索引:(1x索引) 关闭:(1) 如果我们每插入一条都执行一个SQL语句,那么我们需要执行除了连接和关闭之外的所…
在实际应用中,我们经常碰到这种情况,即要统计某个对象或者事件独立出现的次数.对于较小的数据量,这很容易解决,我们可以首先在内存中对序列进行排序,然后扫描有序序列统计独立元素数目.其中排序时间复杂度为O(n*log(n)),扫描时间复杂度为O(n),所以总的时间复杂度为O(n*log(n)).当内存非常充裕时,我们还可以考虑使用哈希,将时间复杂度降到O(n).尤其是当元素只能取有限范围的整数值时,我们还可以使用BitMap节约内存.但是在处理数据流序列时,比如,google的独立访问IP统计,由于…