因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y互质,存在len使该式成立. 于是现在要求的就是 k是固定的,先不管后面一部分.套路地化式子: 设f(i)=[i⊥k].注意到k很小,并且显然有gcd(j,k)=gcd(j%k,k).于是O(k)的预处理出f的前缀和. 那么几乎已经做到线性了,能拿到84分,感觉非常棒. 然而要A掉还需要低于线性的做…
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10\)进制下如果\(\frac{x}{y}\)是纯循环的,只要\(2 \perp y\)且\(5 \perp y\) 可以猜想在\(k\)进制下同样成立 证明: 若\(\frac{x}{y}\)为纯循环小数,设其循环节长度为\(l\),那么一定满足 \[\{ \frac{xk^{l}}{y} \} =…
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2…
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其贡献,可以发现所有被统计的(a,b)乘积的质因数分解形式正好和i,j的所有因数的质因数分解形式一一对应,不重不漏(对于b中质因数指数不为0对应的就是i中指数+b中指数的情况,对于b中质因数指数为0的情况对应i中指数的情况). 然后就有如下的推导: 对于这个式子,整个数字分段来算,n/d一共sqrt(n)种…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. \[N,K,L,H \leq 10^9,H-L \leq 10^5\] 分析 \(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了…
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出 输出一个整数,为…
原题链接 好妙的一道神仙题 题目大意 让你求在\(k\)进制下,\(\frac{x}{y}\)(\(x\in [1,n],y\in [1,m]\))中有多少个最简分数是纯循环小数 SOLUTION 首先查一下资料,你会发现在十进制下,一个分数是纯循环小数的充要条件是分母的质因子中不含\(2\)和\(5\).因为\(10=2\times 5\),于是我们猜在\(k\)进制下只要分母与\(k\)互质即可 orz,猜对了!但是怎么证明呢? 先在十进制下考虑,看一下题目给的提示,可以知道那些余数其实是\…
题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j)==1][gcd(j,K)==1]$ $\sum\limits_{j=1}^{M}[gcd(j,K)==1]\sum\limits_{i=1}^{N}[gcd(i,j)==1]$ 我们先处理右边的式子$\sum\limits_{i=1}^{N}[gcd(i,j)==1]$: $\sum\limits…
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌斯反演,详见这篇博客:初学莫比乌斯反演. 推式子 下面让我们来推式子. 首先,我们采用解决这种问题的常用套路,来枚举\(gcd\),就能得到这样一个式子: \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\fra…