loj2275 「JXOI2017」颜色】的更多相关文章

枚举右端点,然后看左端点合法情况. 先预处理每个颜色 \(i\) 的最大出现位置 \(max_i\) 和最小出现位置 \(min_i\).对于枚举右端点在一个位置 \(i\),凡是 \(max_k > i\) 的颜色 \(k\) 都是不能要的.那么要满足右端点往右都合法,就要找出一个 \(j < i\) 且 \(max_{col_j} > i\) 这样的最大的 \(j\).那么左端点就可以在 \((j,i]\) 之间了. 再来满足左端点往左都合法.对于一个颜色 \(k\),当 \(max…
题解 我们枚举右端点判断合法的左端点有哪些 首先,记录一下右端点右边的点的pre,也就是这个数字前一个出现的位置,取所有小于枚举右端点r的值中最大的一个做为l,用优先队列维护即可,[l + 1,r]就是可能取到的左端点的区间 然后我们对于每一种数字,最前一次出现的位置p,最后一次出现的位置q,覆盖[p + 1,q]这段区间作为不能填的区间,用线段树维护一下,用可取的左端点区间减掉不能填的地方 如果右端点出现过了,那么删除这种数字的覆盖区间,可以在右端点左移的时候同时干这件事 代码 #includ…
二分一下,然后从左到右扫描,扫到左端点就把区间 push 到堆里. 每次有点不符合二分的值时,就贪心地选择右端点最远的 add. #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> using namespace std; int T, n, m, k, aa, dui[200005], din, a[200005], sta[200005], cnt,…
「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set维护一下虚儿子 但是啊,我发现搞这个区间改颜色的时候,虚儿子好像得用树套树维护,我当场就不行了... 每个点如果维护到根的颜色段数\(f\) 然后发现啊,这个你如果用一个lct的一个子树维护同一种颜色,在你access的时候实变虚或者虚变实对子树有一个+1或者-1 然后额外在外面开一个线段树维护子树…
好久没写数据结构了 来补一发 果然写的时候思路极其混乱.... LOJ #2116 Luogu P3241 题意 $ Q$次询问,求树上点的颜色在$ [L,R]$中的所有点到询问点的距离 强制在线 询问次数,树上点数约$ 2·10^5$ $ Solution$ 首先有 $ dist(x,y)=deep(x)+deep(y)-2·deep(lca(x,y))$ 显然这个等式的前两项很容易用前缀和什么的维护 只考虑第三项的话相当于是有边权并且强制在线的「LNOI2014」LCA 用同样的套路将$ d…
「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数只跟子树中所有结点的 \(access\) 次数,可以树形 \(dp\).假设 \(x\) 有 \(m\) 个儿子,每个儿子的 \(access\) 次数为 \(A_i\),自己为 \(A_0\),问题转换成有 \(m+1\) 种颜色,问怎么使颜色不同的间隔最多.使 \(sum=\sum_{i=0}…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k}{i-k}\binom{n}{si}\frac{(si)!}{(s!)^i}(m-i)^{n-si} \] 有两项最开始搞忘了..\(\binom{n}{si}\frac{(si)!}{(s!)^i}\)就是这两个 代表钦定\(si\)个位置去染,然后染色本身是个可重排列 设\(d=\min(\l…
哈喽小伙伴们,我们又见面啦!没错,小摹就是来告诉大家:摹客iDoc又双叒叕升级了!这次又上线了许多新玩法,在此之前,小摹先带大家温习一下iDoc以往的知识点: 攻城狮查看标注的利器 —— 标注信息智能生成 通过点击.hover设计图上的任意元素,查看相应标注. 攻城狮查看标注的利器 —— 召唤放大镜 使用放大镜时,效果图上的标注信息将被定格,同时,你还可以按下小键盘中的“+/-”键调整放大倍数,轻松查看细微标注信息. 那么,重点来了!智能标注无法展示的信息,手动标注来弥补 —— 除了智能标注,你…
#2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左端点,这里不太行.这里只需要统计是否全出现过,pre[i]为这个颜色的上一个位置,那么这也就说明了pre[i]+1这段区间没出现过,所以要求[r+1,n]这段区间的最小的pre都要大于等于l.于是这就是线段树区间查询最小值了. 注意的是,每个点的pre有多个,每个叶子节点包含一个set,把所有的值插…