HDU1695-GCD(数论-欧拉函数-容斥)】的更多相关文章

题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数. 如果b=b/k.d=d/k,b<=d.欧拉函数能够算出1-b与1-b之内的互质对数.然后在b+1到d的数i,求每一个i在1-b之间有多少互质的数. 解法是容斥,getans函数參数的意义:1-tool中含有rem位置之后的i的质因子的数的个数. 在 ];j++) ans); 这个循环中.ans加的等…
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the t…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5454    Accepted Submission(s): 1957 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4141    Accepted Submission(s): 1441 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和1到d/k 2个区间 如果第一个区间小于第二个区间 讲第二个区间分成2部分来做1-b/k 和 b/k+1-d/k 第一部分对于每一个数i 和他互质的数就是这个数的欧拉函数值 全部数的欧拉函数的和就是答案 第二部分能够用全部数减去不互质的数 对于一个数i 分解因子和他不互质的数包括他的若干个因子 这个…
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不会 就自己写了个容斥搞一下(才能维持现在的生活) //别人的题解https://blog.csdn.net/luyehao1/article/details/81672837 #include <iostream> #include <cstdio> #include <cstr…
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 题解一(自己yy) phi[i]表示与x互质的数的个数 即gcd(x,y)=1 1<=y<x ∴对于x,y 若a为素数 则gcd(xa,…
F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1695 Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest c…
[bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using…
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 2478]Farey Sequence(数论--欧拉函数 找规律求前缀和) 求 x/y,gcd(x,y)=1 且 x<y 很像.   而由于这里 x可等于或大于y,于是就求 欧拉函数的前缀和*2+边缘2个点+对角线1个点. 1 #include<cstdio> 2 #include<cst…