HAVE数据集介绍】的更多相关文章

机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集   选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀.杜夏德 要学习怎么使用微软 Azure 机器学习,最重要的是获取样本数据集和进行实验. 在微软,我们有大量的样本数据集可用.这些数据集已经在 Azure Cortana Intelligence Gallery 中的样本模型中得到了应用. 其中一些数据集可以通过 Azure Blob 存储获取,所以…
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. SegmentationObject & SegmentationClass COCO数据集介绍 数据集分类 Coco VOC数据集转化为COCO数据集格式 训练detectron 训练 测试 评估 Reference Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 Annotat…
CCPD是一个大型的.多样化的.经过仔细标注的中国城市车牌开源数据集.CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集.CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌). 在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖.CCPD中的每幅图像都包含大量的标注信息,但是CCPD数据集没有专门的标注文件,每张图像的文件名就是该图像对应的数据标注.标注最困难的部分是注释四个顶点…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果. 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载. 网址:http://yann.lecun.com/exdb/mnist…
CIFAR是一个用于普通物体识别的数据集.CIFAR数据集分为两种:CIFAR-10和CIFAR-100.The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10由60000张大小为32*32的三通道彩色图像组成,被分为1…
CIFAR-10/CIFAR-100数据集解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 CIFAR-10/CIFAR-100数据集 CIFAR-10和CIFAR-100被标记为8000万个微小图像数据集的子集.他们由Alex Krizhevsky,Vinod Nair和Geoffrey Hinton收集. CIFAR-10数据集 CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像.有50000个训练图像和10000个测试图像.…
在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个:     MNIST数据库的来源是两个数据库的混合,一个来自Census Bureau employees(SD-3),一个来自high-school students(SD-1):有训练样本60000个,测试样本10000个.训练样本和测试样本中,employee和student写的都是各占一半.60000个训练样本一共大…
CIFAR-10数据集含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky, Vinod Nair和 Geoffrey Hinton收集而来.包含50000张训练图片,10000张测试图片 http://www.cs.toronto.edu/~kriz/cifar.html 数据集的数据存在一个10000*3072 的 numpy数组中,单位是uint8s,3072是存储了一个32*32的彩色图像.(3072=1024*3).前1024位是r值,中间1024是g值…
数据集:http://bigdata.51cto.com/art/201702/531276.htm 计算机视觉 MNIST: 最通用的健全检查.25x25 的数据集,中心化,B&W 手写数字.这是个容易的任务——但是在 MNIST 有效,不等同于其本身是有效的. 地址:http://pjreddie.com/projects/mnist-in-csv/ CIFAR 10 & CIFAR 100: 32x32 彩色图像.虽不再常用,但还是用了一次,可以是一项有趣的健全检查. 地址:http…
大多数示例使用手写数字的MNIST数据集[^1].该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1.为简单起见,每个图像都被平展并转换为784(28 * 28)个特征的一维numpy数组. 概览 用法 在我们的示例中,我们使用TensorFlow input_data.py脚本来加载该数据集. 它对于管理我们的数据非常有用,并且可以处理: 加载数据集 将整个数据集加载到numpy数组中…