[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big),\] 其中 \(\hat{x}_i\) 表示 \(x_i\) 不在其中. (2)  当 \(a\neq 0\) 时,我们有 \…
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ 1 & x_2-a & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_…
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 0 & a_2+a_1 &…
[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 & \cdots & x_1^n-ax_1^{n-1} \\ 1 & x_2^2-ax_2 & x_2^3-ax_2^2 & \cdots & x_2^n-ax_2^{n-1} \\ \vdots & \vdots & \vdots & \vd…
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vmatrix} \sum_{i=1}^na_i+(n-2)a_1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ \sum_{i=1}^na_i+(n-2)a_2 & 0 & \cdots & a_2+a_{n-1…
这是在百度之星看到的. Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置任何字符,完成后按列读取即成密文. 比如: 原文:123456789 密钥:4 变换后的矩阵: 1234 5678 9xxx (最后的几个x表示无任何字符,不是空格,不是制表符,就没有任何字符,下同) 密文:159263748 再比如: 原文:Hello, welcome t…
可以按照如下设置创建冻结窗口. sheet.createFreezePane( 3, 2, 3, 2 ); 前两个参数是你要用来拆分的列数和行数.后两个参数是下面窗口的可见象限,其中第三个参数是右边区域可见的左边列数,第四个参数是下面区域可见的首行. // 冻结第一行 sheet.createFreezePane( 0, 1, 0, 1 ); // 冻结第一列 sheet.createFreezePane( 1, 0, 1, 0 );…
Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置任何字符,完成后按列读取即成密文. 比如: 原文:123456789 密钥:4 变换后的矩阵: 1234 5678 9xxx (最后的几个x表示无任何字符,不是空格,不是制表符,就没有任何字符,下同) 密文:159263748 再比如: 原文:Hello, welcome to my dream w…
awk删除文件第一列 1.采用awk awk '{$1="";print $0}' file 2.采用sed sed -e 's/[^]* //' file sort -R file 随机排列文件…
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} &…