[概念] LINUX内核中有一个机制叫做OOM killer(Out Of Memery killer) 该机制监控内存占用过大,尤其是瞬间消耗大量内存的进程, 为了防止内存被耗尽,所以OOM killer会将它杀掉 [情景] 某台机器某天不可以ssh登录,但是可以ping通IP ==> 说明不是网络的问题 原因可能是sshd进程被OOM killer杀掉了(这就是假死状况) 重启服务器后,查看日志/var/log/messages会发现Out of Memory: Kill process 1…
转自:http://blog.csdn.net/lu_embedded/article/details/51131663 什么是异步通信?很简单,一旦设备准备好,就主动通知应用程序,这种情况下应用程序就不需要查询设备状态,就像硬件上常提的“中断的概念”.比较准确的说法其实应该叫做“信号驱动的异步I/O”,信号是在软件层次上对中断机制的一种模拟.阻塞I/O意味着一直等待设备可访问再访问,非阻塞I/O意味着使用poll()来查询是否可访问,而异步通信则意味着设备通知应用程序自身可访问. 一.系统中存…
一.驱动中的poll机制 1.简介:select()和poll()系统调用的本质一样,前者在 BSD UNIX 中引入的,后者在 System V 中引入的. 应用程序使用 select() 或 poll() 调用设备驱动程序的 file_operations 的 poll() 函数. 2.实现(1).初始化一个等待队列头init_waitqueue_head(&dev->rx_wait/&dev->tx_wait); (2).实现驱动中的poll()方法 static uns…
很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,然后进程2再去操作临界区.但是往往现实总是残酷的,进程1在执行过程中,进程2很可能在此插入一脚,导致两个进程同时…
转至:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,…
转自:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,然…
知乎链接:https://zhuanlan.zhihu.com/p/58087261 Linux内核代码中广泛使用了数据结构和算法,其中最常用的两个是链表和红黑树. 链表 Linux内核代码大量使用了链表这种数据结构.链表是在解决数组不能动态扩展这个缺陷而产生的一种数据结构.链表所包含的元素可以动态创建并插入和删除.链表的每个元素都是离散存放的,因此不需要占用连续的内存.链表通常由若干节点组成,每个节点的结构都是一样的,由有效数据区和指针区两部分组成.有效数据区用来存储有效数据信息,而指针区用来…
在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能及时的反应到读操作中(锁机制无法保证时序正确).可能读起来…
大话Linux内核中锁机制之内存屏障.读写自旋锁及顺序锁 在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能…
在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界区:拷贝(Copy):写者在访问临界区时,写者…
大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界…
自旋锁的思考:http://bbs.chinaunix.net/thread-2333160-1-1.html 近期在看宋宝华的<设备驱动开发具体解释>第二版.看到自旋锁的部分,有些疑惑.所以来请教下大家. 以下是我參考一些网络上的资料得出的一些想法,不知正确与否.记录下来大家讨论下: (1) linux上的自旋锁有三种实现:           1. 在单cpu.不可抢占内核中,自旋锁为空操作.           2. 在单cpu,可抢占内核中,自旋锁实现为"禁止内核抢占&quo…
在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A而言,如果执行单元B不执行complete函…
在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的保护,而wait_list则是对申请信号量的进程维…
大话Linux内核中锁机制之完成量.互斥量 在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A…
大话Linux内核中锁机制之信号量.读写信号量 在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的保…
本文结合具体代码对 Linux 内核中的 device mapper 映射机制进行了介绍.Device mapper 是 Linux 2.6 内核中提供的一种从逻辑设备到物理设备的映射框架机制,在该机制下,用户可以很方便的根据自己的需要制定实现存储资源的管理策略,当前比较流行的 Linux 下的逻辑卷管理器如 LVM2(Linux Volume Manager 2 version).EVMS(Enterprise Volume Management System).dmraid(Device M…
本文结合具体代码对 Linux 内核中的 device mapper 映射机制进行了介绍.Device mapper 是 Linux 2.6 内核中提供的一种从逻辑设备到物理设备的映射框架机制,在该机制下,用户可以很方便的根据自己的需要制定实现存储资源的管理策略,当前比较流行的 Linux 下的逻辑卷管理器如 LVM2(Linux Volume Manager 2 version).EVMS(Enterprise Volume Management System).dmraid(Device M…
转自:http://blog.chinaunix.net/uid-23769728-id-3080134.html RCU的设计思想比较明确,通过新老指针替换的方式来实现免锁方式的共享保护.但是具体到代码的层面,理解起来多少还是会有些困难.在<深入Linux设备驱动程序内核机制>第4章中,已经非常明确地叙述了RCU背后所遵循的规则,这些规则是从一个比较高的视角来看,因为我觉得过多的代码分析反而容易让读者在细节上迷失方向.最近拿到书后,我又重头仔细看了RCU部分的文字,觉得还应该补充一点点内容,…
本文转载自:http://blog.csdn.net/ce123_zhouwei/article/details/8562958 Linux内核中的信号机制--一个简单的例子 Author:ce123(http://blog.csdn.NET/ce123) 信号机制是类UNIX系统中的一种重要的进程间通信手段之一.我们经常使用信号来向一个进程发送一个简短的消息.例如:假设我们启动一个进程通过socket读取远程主机发送过来的网络数据包,此时由于网络因素当前主机还没有收到相应的数据,当前进程被设置…
本文详细的介绍了Linux内核中的同步机制:原子操作.信号量.读写信号量和自旋锁的API,使用要求以及一些典型示例 一.引言 在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实象多进程多线程编程一样也需要一些同步机制来同步各执行单元对共享数据的访问.尤其是在多处理器系统上,更需要一些同步机制来同步不同处理器上的执行单元对共享的数据的访问. 在主流的Linux内核中包含了几乎所有现代的操作系统具有的同步机制,这些同步机制包括:原子操作.信号量(semaphore).读写信号量(rw…
访问共享资源的代码区域称为临界区,临时以某种互斥机制加以保护.中断屏蔽.原子操作 自旋锁和信号量是Linux设备驱动中可采用的互斥途径. 在单CPU范围内避免竞态的一种简单方法是在进入临界区之前屏蔽系统的中断. CPU一般都具备屏蔽中断和打开中断的功能. 中断屏蔽的使用方法: Local_irq_disable();  //屏蔽中断--->和它不同的是local_irq_save除了禁止中断操作以外还可以保存目前CPU的中断位信息 ...... 临界区 ...... Local_irq_enab…
转自:http://www.oenhan.com/kernel-deadlock-check 死锁就是多个进程(线程)因为等待别的进程已占有的自己所需要的资源而陷入阻塞的一种状态,死锁状态一旦形成,进程本身是解决不了的,需要外在的推动,才能解决,最重要的是死锁不仅仅影响进程业务,而且还会占用系统资源,影响其他进程.所以内核中设计了内核死锁检测机制,一旦发现死锁进程,就重启OS,快刀斩乱麻解决问题.之所以使用重启招数,还是在于分布式系统中可以容忍单点崩溃,不能容忍单点进程计算异常,否则进行死锁检测…
1.前言 众所周知,Linux系统是一个多任务的操作系统,当多个任务同时访问同一片内存区域的时候,这些任务可能会相互覆盖内存中数据,从而造成内存中的数据混乱,问题严重的话,还可能会导致系统崩溃. 2.相关概念 了解一下Linux内核中并发与竞态的相关概念,如下: 并发与竞争:并发指的是多个执行单元同时.并行地执行,当并发的执行单元对共享资源(硬件资源和软件上的全局变量.静态变量等)的访问则很容易导致竞态现象. 临界区:访问共享资源的代码区叫做临界区. SMP:对称多处理器. 3.竞态产生原因及处…
http://blog.sina.com.cn/s/blog_502c8cc401012pxj.html [摘要]本文首先介绍非抢占式内核(Non-Preemptive Kernel)和可抢占式内核(Preemptive Kernel)的区别.接着分析Linux下有两种抢占:用户态抢占(User Preemption).内核态抢占(Kernel Preemption).然后分析了在内核态下:如何判断能否抢占内核(什么是可抢占的条件):何时触发重新调度(何时设置可抢占条件):抢占发生的时机(何时检…
Linux内核态抢占机制分析  http://blog.sina.com.cn/s/blog_502c8cc401012pxj.html 摘 要]本文首先介绍非抢占式内核(Non-Preemptive Kernel)和可抢占式内核(Preemptive Kernel)的区别.接着分析Linux下有两种抢占:用户态抢占(User Preemption).内核态抢占(Kernel Preemption).然后分析了在内核态下:如何判断能否抢占内核(什么是可抢占的条件):何时触发重新调度(何时设置可抢…
如果需要查看具体的synchronized和lock的实现原理,请参考:解决多线程安全问题-无非两个方法synchronized和lock 具体原理(百度) 在并发编程中,经常遇到多个线程访问同一个 共享资源 ,这时候作为开发者必须考虑如何维护数据一致性,在java中synchronized关键字被常用于维护数据一致性.synchronized机制是给共享资源上锁,只有拿到锁的线程才可以访问共享资源,这样就可以强制使得对共享资源的访问都是顺序的,因为对于共享资源属性访问是必要也是必须的,下文会有…
[TOC] 本文基于Linux2.6.32内核版本号. 引言 软中断.tasklet和工作队列并非Linux内核中一直存在的机制,而是由更早版本号的内核中的"下半部"(bottom half)演变而来. 下半部的机制实际上包含五种,但2.6版本号的内核中.下半部和任务队列的函数都消失了,仅仅剩下了前三者. 介绍这三种下半部实现之前.有必要说一下上半部与下半部的差别. 上半部指的是中断处理程序,下半部则指的是一些尽管与中断有相关性可是能够延后运行的任务. 举个样例:在网络传输中.网卡接收…
Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介绍了内核抢占和用户抢占的概念和区别,接着分析了不可抢占内核的特点及实时系统中实现内核抢占的必要性.然后分析了禁止内核抢占的情况和内核抢占的时机,最后介绍了实现抢占内核所做的改动以及何时需要重新调度. [关键字]内核抢占,用户抢占,中断, 实时性,自旋锁,抢占时机,调度时机,schedule,pree…
与网络数据包的发送不同,网络收包是异步的的.由于你不确定谁会在什么时候突然发一个网络包给你.因此这个网络收包逻辑事实上包括两件事:1.数据包到来后的通知2.收到通知并从数据包中获取数据这两件事发生在协议栈的两端.即网卡/协议栈边界以及协议栈/应用边界:网卡/协议栈边界:网卡通知数据包到来,中断协议栈收包:协议栈栈/应用边界:协议栈将数据包填充socket队列,通知应用程序有数据可读,应用程序负责接收数据. 本文就来介绍一下关于这两个边界的这两件事是怎么一个细节,关乎网卡中断,NAPI.网卡pol…